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Preamble 
A “complex system” is in general any system comprised of a great number of 

heterogeneous entities, among which local interactions create multiple levels of collective 
structure and organization. Examples include natural systems ranging from bio-molecules and 
living cells to human social systems and the ecosphere, as well as sophisticated artificial 
systems such as the Internet, power grid or any large-scale distributed software system. A 
unique feature of complex systems, generally overlooked by traditional science, is the 
emergence of non-trivial superstructures which often dominate the system’s behaviour and 
cannot be easily traced back to the properties of the constituent entities. Not only do higher 
emergent features of complex systems arise from lower-level interactions, but the global 
patterns that they create affect in turn these lower levels—a feedback loop sometimes called 
immergence. In many cases, complex systems possess striking properties of robustness 
against various large-scale and potentially disruptive perturbations. They have an inherent 
capacity to adapt and maintain their stability. Because complex systems require analysis at 
many different spatial and temporal scales, scientists face radically new challenges when 
trying to observe complex systems, in learning how to describe them effectively, and in 
developing original theories of their behaviour and control. 

Complex systems demand an interdisciplinary approach, as the universal questions 
they raise find expression in le widely different systems across a broad spectrum of 
disciplines—from biology to computer networks to human societies. Moreover, the models 
and methods used to tackle these questions also belong to different disciplines—mainly 
computer science, mathematics and physics—and the standard methods of specialized 
domains rarely take into account the multiple-level viewpoint so needed in the context of 
complex systems, and attained only through a more integrated and interdisciplinary approach. 

Two main kinds of interdisciplinary investigation can be envisioned. The first path 
involves working on a topic of research that is intrinsically multidisciplinary, for example 
“cognition,” and posing various questions about the same topic from multiple and somewhat 
disconnected disciplinary viewpoints (from neuroscience, psychology, artificial intelligence, 
etc.). The second path consists in studying the same question, for example, “what causes 
synchronization?”, in connection with different objects of research in different disciplines 
(statistical physics, chemistry, biology, electrical engineering, etc.). This second approach 
establishes the foundations of a true science of complex systems. However, the success of 
these two complementary approaches depends critically on the design of new protocols, new 
models and new formalisms for the reconstruction of emergent phenomena and dynamics at 
multiple scales. It is on the successful pursuit of this joint goal of (a) massive data acquisition 
on the basis of certain prior assumptions, and (b) reconstruction and modeling of such data, on 
which the future science of complex systems depends. There remains much to do in the 
theoretical domain in order to build concepts and models able to provide an elegant and 
meaningful explanation of the so-called “emergent” phenomena that characterize complex 
systems. 

The aim of this roadmap is to identify a set of wide thematic domains for complex 
systems research over the next five years. Each domain is organized around a specific 
question or topic and proposes a relevant set of “grand challenges”, i.e., clearly identifiable 
problems whose solution would stimulate significant progress in both theoretical methods and 
experimental strategies. 
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Theoretical questions issue immediately from the need to account for different levels 
of organization. In complex systems, individual behaviour leads to the emergence of 
collective organization and behaviour at higher levels, and these emergent structures in turn 
influence individual behaviour. This two-way causal influence raises important questions: 
what are the various levels of organization and what are their characteristic scales in space 
and time? How do reciprocal influences operate between the individual and collective 
behaviour? How can we simultaneously study multiple levels of organization, as is often 
required in problems in biology or social sciences? How can we efficiently characterize 
emergent structures? How can we understand the changing structures of emergent forms, their 
robustness or sensitivity to perturbations? Is it more important to study the attractors of a 
given dynamical system, or families of transient states? How can we understand slow and fast 
dynamics in an integrated way? What special emergent properties characterize those complex 
systems that are especially capable of adaptation in changing environments? During such 
adaptation, individual entities often appear and disappear, creating and destroying links in the 
system's graph of interactions. How can we understand the dynamics of these changing 
interactions and their relationship to the system’s functions? 

Other key questions arise out of the challenge of reconstructing system dynamics from 
data. These include questions related to the epistemic loop (the problem of moving from data 
to models and back to data, including model-driven data production), which is the source of 
very hard inverse problems. Other fundamental questions arise around the constitution of 
databases, or the selection and extraction of stylized facts from distributed and heterogeneous 
databases, or the deep problem of reconstructing appropriate dynamical models from 
incomplete, incorrect or redundant data. 

Finally, some questions also emerge from efforts to govern or design complex 
systems, which one might think of as “complex systems engineering.” On the basis of an 
incomplete reconstruction of dynamics based on data, how can we learn to steer a system’s 
dynamics toward desirable consequences or at least keep itaway from regimes where it 
exhibits undesirable behaviour? How can one achieved a so-called “complex control,” with 
controlling influences distributed on many distinct hierarchical levels in either a centralized or 
decentralized way? Finally, how is it possible to design complex artificial systems, using new 
techniques of multilevel control? 

In addition to the questions just outlined, another key issue is the reaction of complex 
systems to perturbations, which can be weak for certain components or on certain scales of 
the system and strong for others. These effects, central to the prediction and control of 
complex systems and models, must be specifically studied. In addition, it is also important to 
develop both strategies for representing and extracting pertinent parameters and formalisms 
for modeling morphodynamics. Learning to successfully predict multiscale dynamics raises 
other important challenges, and will be required in going from controlled systems to governed 
systems in which control is less centralized and more distributed among hierarchical levels. 

Grand challenges for complex systems research draw inspiration from a wide variety 
of complex phenomena arising in different scientific fields. Their presentation follows the 
hierarchy of organizational levels of complex systems, either natural, social or artificial. 
Understanding this hierarchy is itself a primary goal of complex systems science. 

In modern physics, the understanding of collective behaviour and out-of-equilibrium 
fluctuations is increasingly important. Biology also faces complex behaviours at every level, 
in systems ranging from biological macromolecules and molecular systems through entire 
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ecosystems. Indeed, the question of gaining an integrated understanding of the different scales 
of biological systems is probably one of the most difficult and exciting tasks for researchers in 
the next decade. Before we can hope to develop an integrated understanding of the full 
hierarchy of living systems, we must study and understand the integration between one level 
and the next. The hierarchy of levels includes cellular and sub-cellular spatiotemporal 
organization, and multicellular systems (integrating intracellular dynamics, such as gene 
regulation networks, with cell-cell signalling and bio-mechanical interactions), where the 
question of the impact of local perturbations on the stability and dynamics of multicellular 
organizations takes great importance. These systems underlie larger scale physiological 
functions, which emerge from sets of cells and tissues in complex interaction within a given 
environment. At the highest level, the understanding and control of ecosystems involves 
richly integrated interactions among living organisms in a given biotope.  

In the context of the human and social sciences, too, the complex systems approach is 
rapidly assuming central importance (even if it is currently less developed than in biology). 
One crucial domain to be investigated is learning how the individual cognition of interacting 
agents leads to social cognition. Another important phenomenon, with particularly important 
societal consequences, is the mystery of innovation, its dynamical appearance and diffusion, 
frequency and coevolution, and how all of this links up with human cognition. Complex 
systems approaches offer promise to gain an integrated understanding of the many conflicting 
demands and forces which must be managed if our societies are to move toward sustainable 
development. In the context of globalization and the growing importance of long-distance 
interactions through a variety of networks, complex systems analysis (including direct 
observations and simulation experiments) can help us explore a variety of issues related to 
economic development, social cohesion, or the environment at different geographical scales. 

Finally, the rapidly growing influence of information and communication technologies 
in our societies and the large number of decentralized networks relying on these new 
technologies require research and management ideas coming from complex systems science. 
In particular, the trend in information science is moving from processors to networks, and this 
leads to the emergence of so-called “ubiquitous intelligence,” a phenomenon that will play an 
increasing role in determining how the networks of the future will be designed and managed. 
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1.1. Formal epistemology, experimentation, machine 
learning 

Reporter: Nicolas Brodu (INRIA – Rennes) 
 
Contributors: Paul Bourgine (CREA, Ecole Polytechnique), Nicolas Brodu (INRIA – 
Rennes), Guillaume Deffuant (CEMAGREF), Zoi Kapoula (CNRS), Jean-Pierre Müller 
(CIRAD), Nadine Peyreiras (CNRS). 
  
Keywords: Methodology, tools, computer, experimentation, modeling, validation, machine 
learning, epistemology, visualization, interaction, functional entity, formalization, 
phenomenological reconstruction. 

Introduction 

The modern world, especially in medicine, in the social sphere and in the environment, 
increasingly depends on or confronts very large systems comprised of many interacting 
entities. The data collected on such systems, typically on enormous scales, poses formidable 
challenges for efforts to reconstruct their multiscale dynamics and their multiple downward 
and upward influences. The task requires the help of a formal epistemology and massive 
computation, and a generalization of the kind of "open science" originally inspired by the 
high-energy physics community. 

 
The task of understanding a phenomenon amounts to finding a reasonably precise and 

concise approximation for its structure and behaviour, which can be grasped by the human 
mind. As it is, human intuition unaided cannot handle the intrinsic subtleties and non-intuitive 
properties of complex systems. Ideally, optimal formal techniques may provide us with 
candidate concepts and relations, which can then serve as a basis for the human experimental 
work. When the optimal forms found by the theory do not match the optimal concepts for the 
human brain, the reason for this discrepancy will itself be the subject of further investigation. 
Understanding complex systems thus requires defining and implementing a specific formal 
and applied epistemology. New methods and tools have to be developed to assist 
experimental design and interpretation for: 

• Identifying relevant entities at a given time and space scale. 
• Characterizing interactions between entities. 
• Assessing and formalizing the system behaviour. 
 

The strategy from experimental design to post hoc data analysis should reconcile the 
hypothesis- and data-driven approaches by: 

• Defining protocols to produce data adequate for the reconstruction of multiscale 
dynamics. 

• Bootstrapping through the simultaneous building of a theoretical framework for further 
prediction and experimental falsification. 

• A functional approach at different levels, leading to the construction of adequate 
formalisms at these levels. There is no theoretical guarantee that one formal level 
could then be deducible in any way from another, but this does not matter: 
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Phenomenological reconstruction steps are preferable at each relevant level for the 
comprehension of the system. 
 
The methodology begins with observation and data collection. However, there comes 

a point at which it is not relevant to go on collecting data without knowing whether they are 
really required for understanding the system behaviour. Phenomenological reconstruction 
leads to data parameterisation and obtained measurements should allow further detection and 
tracking of transient and recurrent patterns. These features themselves only make sense if they 
are integrated into a model aiming to validate hypotheses. We expect here to find a model 
consistent with the observations. The mere fact of building the model necessitates the 
formalization of hypotheses on the system behaviour and underlying processes. Part of the 
understanding comes from there, and more comes from the possibility of validating the 
model's predictions through experimentation. This last point is depicted on the right-hand side 
of the graph below. 

Formal & Applied Epistemology 

 
 

The workflow of theoretical reconstruction 
 
The integration of computer science is an essential component of this epistemology. 

Computer science should provide: 
• Exploratory tools for a data-based approach. Unsupervised machine learning can 

provide people with candidate patterns and relations that unaided human intuition 
would never detect. Active machine learning is concerned with determining which 
experiments are best suited to test a model, which is at the heart of the above 
epistemology. 

• Tools for comparison between the model (hypothesis-driven) and the observations. 
Supervised learning corresponds to exploring the model parameter space for a good fit 
to the data. Auto-supervised learning is used when a temporal aspect allows the 
continuous correction of model predictions with the observed data corresponding to 
these predictions. 
Computer science methods and tools are required in the following steps: 

• Human-machine interactions: visualization and interaction with data, ontologies and 
simulations. 
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• Building ontologies of relevant functional entities at different levels. 
• Constructing hypotheses, formalizing relations between entities, designing models. 
• Validating the models. 
 
We expect certain fundamental properties from computer science methods and tools: 
• Generic tools should be as independent as possible from a logical (interpretation) 

framework. In particular, because of the varying cultural habits of different disciplines 
and the specificities of each system, it is preferable to propose a collection of 
independent and adaptable tools, rather than an integrated environment that would not 
cover all cases anyway. 

• Independence should also apply for the software aspect (for the usage and the 
evolution and the adaptation of the tools to specific needs). This requires free/libre 
software as a necessary but not sufficient condition. 

• Tools need to be useful for a specialist and also usable by non-specialist. This can be 
achieved, for example, by providing domain-specific features with added value for the 
specialist as extensions (modules, etc.) of the generic tools. 

• Readiness for use: The preconditions for the application of the tool should be minimal, 
the tool should not require a large engineering effort before it can be used. 

 
 
 

Main Challenges 
1. Computer tools for exploration and formalization 
2. Computer assisted human interactions 
 

 

1.1.1. Computer tools for exploration and formalization 

The computer must be identified as an exploration and formalization tool and 
integrated into an epistemology of complex systems. 

Some research domains currently embrace this approach and their efforts need to be 
furthered. Computational mechanics and its causal state reconstruction is one candidate 
technique which could possibly automate phenomenological reconstruction, but there are 
challenges concerning its real applicability. For example, we face obstacles in finding a 
practical algorithm for the continuous case, or in building significant statistical distributions 
with a limited number of samples (relative to the search space). Statistical complexity can also 
be considered as a useful exploratory filter to identify the promising zones and interacting 
entities in the system. Another research domain that could be integrated into the epistemology 
is the quantification of the generalization capabilities of learning systems (e.g. Vapnik et al.). 
Automated selection of the most promising hypotheses and/or data instances is the topic of 
active learning. Its application is particularly straightforward for exploring the behaviour of 
dynamical computer models, but more challenging for multiscale complex systems. The 
problem may be, for instance, to determine response surfaces which lead to a major change of 
behaviour (the collapse of an ecosystem, for instance). When the system is of high dimension, 
the search space is huge and finding the most informative experiments becomes crucial. Some 
analysis techniques are inherently multiscale (e.g. fractal/multifractal formalisms) and would 
need to be integrated as well. Dynamical regimes are a essential part of complex systems, 
where sustained non-stationary and/or transient phenomena maintain the state out of static 
equilibrium. Some of the existing mathematical and algorithmic tools should be adapted to 
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this dynamic context and new ones may have to be created specifically. Research is also 
needed on how to integrate these dynamical aspects directly into the experimental and formal 
aspects of the above epistemology. 

1.1.2. Computer assisted human interactions 

The computer has become a necessary component of scientific epistemology, as an 
extension to the human experimentalist. Three kinds of interactions involving humans and 
machines might be considered: 

• Machine to human: The human sensory system (sight, hearing, etc.) is exceedingly 
powerful for some tasks, such as detecting patterns in an image, but quite poor for 
tasks like visualizing relations in large-dimensional spaces and graphs. Research is 
needed to explore how machines might provide people with an adequate 
representation of a complex system, in a form suitable for the human sensory system. 

• Human to machine: The feedback and control that an unaided human can perform on 
a complex system is similarly limited. For example, when people act as the 
discriminating element for repeated decision-making (e.g. attributing/selecting fitness 
criteria of model parameters), the rate at which people can make decisions limits the 
execution speed of the algorithm. As a parallel to the visualization problem, human 
interaction capabilities on a large-dimensional simulation are relatively poor, 
especially with conventional devices such as a mouse and keyboard. Finding controls 
(software or hardware) adapted to the human morphology and limitations is another 
part of this human/complex system interaction challenge. 

• Human to human: The computer should help human communication. For instance, 
knowledge from domain experts is often lost when non-specialist computer scientists 
formalize and create the experiments that experts need. Ideally, the computer should 
be a tool that enhances - not hampers - cross-disciplinary communication, and should 
be directly usable by the experts themselves for designing experiments and models 
and running simulations. But the use of the computer as a facilitator of human-to-
human relations is not limited to interdisciplinary aspects. The computer should 
become an integral part of the collaborative process necessary to handle complex 
systems. 
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1.2. Stochastic and multiscale dynamics, instabilities and 
robustness 

 
Reporter: Daniel Schertzer (Meteo France) 
 
Contributors: Pierre Baudot (Inaf CNRS), Hughes Berry (INRIA), François Daviaud (CEA), 
Bérengère Dubrulle (CEA), Patrick Flandrin (CNRS ENS Lyon), Cedric Gaucherel (INRA), 
Michael Ghil (ENS Paris), Gabriel Lang (AGRPParis Tech), Eric Simonet (CNRS).  
  
Keywords: Random dynamical systems, non stationarity, long range/ short range 
dependence, local/nonlocal interactions, discrete/continuous scaling, cascades, 
wavelet/multifractal analysis, multiscale modeling and aggregation/disaggregation, pattern 
recognition, graph dynamics, extremes distribution and large deviations. 

Introduction 

Hierarchical structures extending over a wide range of space-time scales are 
ubiquitous in the geosciences, the environment, physics, biology and socio-economic 
networks. They are the fundamental structures building up our four-dimensional world’s 
complexity. Scale invariance, or "scaling" for short, is a powerful mathematical tool for 
characterising these structures and inferring properties across scales, instead of dealing with 
scale-dependent properties. Whereas scaling in time or in space has been investigated in many 
domains, four-dimensional scaling analysis and modeling are still relatively little used and 
under-developed, even though it is indispensable for describing, estimating, understanding, 
simulating and predicting the underlying dynamics. Rather complementary to this approach, 
random dynamical system theory is also a powerful approach for grasping multiscale 
dynamics. This theory is likely to provide interesting generalizations of what we have learned 
from deterministic dynamical systems, particularly in the case of bifurcations. Other 
important domains of investigation are phase transitions, emerging patterns and behaviours 
which result when we move up in scale in the complex four-dimensional fields. 

 
 

      Main Challenges 
1. The cascade paradigm 
2. Random dynamical systems and stochastic bifurcations 
3. Phase transitions, emerging patterns and behaviour 
4. Space-time scaling in physics and biology 

 

1.2.1. The cascade paradigm 

The idea of structures nested within larger structures, themselves nested within larger 
structures and so on over a given range of space-time scales has been in physics for some 
time, and could be traced back to Richardson’s book (Weather Prediction by Numerical 
Processes, 1922) with his humoristic presentation of the paradigm of cascades. This paradigm 
became widely used well beyond its original framework of atmospheric turbulence, in such 
fields as ecology, financial physics or high-energy physics. In a generic manner, a cascade 
process can be understood as a space-time hierarchy of structures, where interactions with a 
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mother structure are similar in a given manner to those with its daughter structures. This 
rather corresponds to a cornerstone of multiscale stochastic physics, as well as of complex 
systems: a system made of its own replicas at different scales. 

 
Cascade models have gradually become well-defined, especially in a scaling 

framework, i.e. when daughter interactions are a rescaled version of mother ones. A series of 
exact or rigorous results have been obtained in this framework. This provides a powerful 
multifractal toolbox to understand, analyse and simulate extremely variable fields over a wide 
range of scales, instead of simply at a given scale. Multifractal refers to the fact that these 
fields can be understood as an embedded infinite hierarchy of fractals, e.g. those supporting 
field values exceeding a given threshold. These techniques have been applied in many 
disciplines with apparent success. 

 
However, a number of questions about cascade processes remain open. They include: 

universality classes, generalized notions of scale, extreme values, predictability and more 
generally their connection with dynamical systems either deterministic-like (e.g. Navier-
Stokes equations) or random (those discussed in the next section). It is certainly important to 
look closely for their connections with phase transitions, emerging patterns and behaviours 
that are discussed in the corresponding section. Particular emphasis should be placed on 
space-time analysis and/or simulations, as discussed in the last section on the general question 
of space-time scaling. 

1.2.2. Random dynamical systems and stochastic bifurcations 

Along with mathematicians' interest in the effects of noise on dynamical systems, 
physicists have also paid increasing attention to noise effects in the laboratory and in models. 
The influence of noise on long-term dynamics often has puzzling non-local effects, and no 
general theory exists at the present time. In this context, L. Arnold and his "Bremen group" 
have introduced a highly novel and promising approach. Starting in the late 1980s, this group 
developed new concepts and tools that deal with very general dynamical systems coupled 
with stochastic processes. The rapidly growing field of random dynamical systems (RDS) 
provides key geometrical concepts that are clearly appropriate and useful in the context of 
stochastic modeling.  

 
This geometrically-oriented approach uses ergodic and measure theory in an ingenious 

manner. Instead of dealing with a phase space S, it extends this notion to a probability bundle, 
S x probability space, where each fiber represents a realization of the noise. This external 
noise is parametrized by time through the so-called measure-preserving driving system. This 
driving system simply "glues" the fibers together so that a genuine notion of flow (cocycle) 
can be defined. One of the difficulties, even in the case of (deterministic) nonautonomous 
forcing, is that it is no longer possible to define unambiguously a time-independent forward 
attractor. This difficulty is overcome using the notion of pullback attractors. Pullback 
attraction corresponds to the idea that measurements are performed at present time t in an 
experiment that was started at some time s<t in the remote past, and so we can look at the 
"attracting invariant state" at time t. These well-defined geometrical objects can be 
generalized with randomness added to a system and are then called random attractors. Such a 
random invariant object represents the frozen statistics at time t when "enough" of the 
previous history is taken into account, and it evolves with time. In particular, it encodes 
dynamical phenomena related to synchronization and intermittency of random trajectories.  
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This recent theory presents several great mathematical challenges, and a more 
complete theory of stochastic bifurcations and normal forms is still under development. As a 
matter of fact, one can define two different notions of bifurcation. Firstly, there is the notion 
of P-bifurcation (P for phenomenological) where, roughly speaking, it corresponds to 
topological changes in the probability density function (PDF). Secondly, there is the notion of 
D-bifurcation (D for dynamical) where one considers a bifurcation in the Lyapunov spectrum 
associated with an invariant Markov measure. In other words, we look at a bifurcation of an 
invariant measure in a very similar way as we look at the stability of a fixed point in a 
deterministic autonomous dynamical system. D-bifurcations are indeed used to define the 
concept of stochastic robustness through the notion of stochastic equivalence. The two types 
of bifurcation may sometimes, but not always be related, and the link between the two is 
unclear at the present time. The theory of stochastic normal form is also considerably enriched 
compared to the deterministic one but is still incomplete and more difficult to establish. 
Needless to say, bifurcation theory might be applied to partial differential equations (PDEs) 
but even proving the existence of a random attractor may appear very difficult. 

1.2.3. Phase transitions, emerging patterns and behaviour 

Phase transitions are usually associated with the emergence of patterns and non-trivial 
collective behaviour, for instance due to the divergence of a correlation length. Beyond the 
classical example of glassy systems, these features have been recently observed in shear 
flows, where the transition from laminar to turbulence occurs discontinuously through gradual 
increasing of the Reynolds Number. In such a case, the order parameter is the volume fraction 
occupied by the turbulence as it slowly organizes into a band pattern, with a wavelength that 
is large with respect to any characteristic size of the system. 

 
A similar transition seems to occur in cortical dynamics, when experimenters increase 

the forcing of the sensory flow, using spectral or informational measures as an order 
parameter. When subjected to simple visual input, neuronal processing is almost linear and 
population activity exhibits localized blob patterns. When subjected to more informational 
and realistic stimuli, the neuronal processing appears to be highly nonlinear, integrating input 
over large spatial scales (center-surround interaction) and population patterns become more 
complex and spatially distributed.  

 
The present challenge is to build a simple stochastic model which can account for the 

emerging structures generated by the dynamic and their dependence on the forcing. A more 
fundamental long-term aim is to catch both glassy and turbulent flow dynamics under such 
formalism.  

 
A novel approach consists in considering a population of agents which have their own 

dynamics and characterizing their collective behaviour at different observation scales through 
gradual aggregation. 

 
The simplest way to aggregate agents is to sum an increasing number of them. When 

they are identically distributed and independent random variables, the law of large numbers 
and the central limit theorem apply and the resulting collective evolution is analogous to the 
individual one. The result does not change when the dependence is short range; this would be 
the equivalent of the laminar phase. As the spatial dependence becomes long range, the nature 
of the collective behaviour changes (lower rate of convergence, different limit process). By 
playing with the interaction range, one is therefore able to induce a phase transition. 
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Another kind of transition is observable if one allows for non-linear effects in the 
aggregation process. In such a case, the resulting process may be short-range or long-range 
dependent, even if the dynamics of the individual are simple (autoregressive short-range 
dependence in space and time). 

 
A first task is to develop such aggregation methods for simple individual models and 

to investigate the joint effect of dependence and aggregation process. Examples of 
applications include geophysical problems, hydrology and hydrography, integrative biology 
and cognition. 

1.2.4. Space-time scaling in physics and biology 

1.2.4.1. Empirical background 

Systems displaying a hierarchy of structures on a wide range of time and space scales 
occur almost everywhere in physics and biology.  

 
In the geosciences, ‘Stommel diagrams’ displaying life time vs. size of structures 

(usually in log-log plots) span several orders of magnitude, but a satisfactory explanation of 
this state of affairs is missing. 

 
In biology, metagenomics have recently been developed to explore microbial 

biodiversity and evolution by mining urban waste to improve our knowledge of the “tree of 
life,” but the time structure is far from being reliably estimated. 

 
In the area of computer and social networks, the web is the best-known example, but 

scale-invariant and small-world networks are encountered everywhere; in this case 
researchers have begun to explore the temporal aspects of such networks, but the connection 
between time evolution and spatial structure requires further attention. 

1.2.4.2. State of the art 

a) Taylor’s hypothesis of frozen turbulence (1935), also used in hydrology, is 
presumably the simplest transformation of time scaling into space scaling. This is obtained by 
supposing that the system is advected with a characteristic velocity. 

  
b) In other cases, the connection between space and time scaling is less evident. As 

already pointed out, this is the case for computer networks: (space) network topology and 
(time) computer traffic have been separately studied up to now. Morphogenesis is a research 
domain that requires the development of space-time scaling analysis. 

 
c) More recently, the comparison of scaling in time vs. scaling in space has been used 

to determine a scaling time-space anisotropy exponent, also often called a dynamical 
exponent.  

1.2.4.3. What is at stake 

a) Why do we need to achieve space-time analysis/modeling? 
Basically there is no way to understand dynamics without space and time. For instance, 
whereas earlier studies of chromosomes were performed only along 1D DNA positions, 4D 
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scaling analysis is required to understand the connection between the chromosome structure 
and the transcription process.  
 

b) Data analysis 
We need to further develop methodologies: 

• to perform joint time-space multiscale analysis either for exploratory analysis or for 
parameter and uncertainty estimations, 

• to extract information from heterogeneous and scarce data, 
• to carry out 4-D data assimilation taking better account of the multiscale variability of 

the observed fields, 
• for dynamical models in data mining. 

 
c) Modeling and simulations 

We also need to further develop methodologies: 
• to select the appropriate representation space (e.g. wavelets), 
• to define parsimonious and efficient generators, 
• to implement stochastic subgrid-scale parametrizations. 

 



20 
 

1.3. Collective behavior in homogeneous and 
heterogeneous systems 
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Introduction 

From genetic and social networks to the ecosphere, we face systems composed of 
many distinct units which display collective behaviour on space and time scales clearly 
separated from those of individual units. Among many others, we can mention cellular 
movements in tissue formation, flock dynamics, social and economic behaviour in human 
societies, or speciation in evolution. 

 
The complexity of such phenomena manifests itself in the non-trivial properties of the 

collective dynamics - emerging at the global, population level - with respect to the 
microscopic level dynamics. Many answers and insights into such phenomena can and have 
been obtained by analysing them through the lens of non-linear dynamics and out-of-
equilibrium statistical physics. In this framework, the microscopic level is often assumed to 
consist of identical units. Heterogeneity is, however, present to varying extents in both real 
and synthetic populations. Therefore, the existing descriptions also need to encompass 
variability in both the individual units and the surrounding environment, and to describe the 
structures that emerge at the population level. Similarly, while a homogeneous environment 
(medium) is a useful approximation for studying collective dynamics, hardly any real 
environment, either natural or artificial, is homogeneous, and heterogeneity deeply 
influencing the structures, dynamics and fates of a population. The variability of the 
environment applies both on spatial and temporal scales. Examples include filaments and 
vortices in fluid media, patches and corridors in landscapes, or fluctuating resources. 

 
From a methodological point of view, successful modeling of such influences requires, 

at least: the quantification of environmental heterogeneities at different scales; the 
improvement of the formalization of heterogeneity; the identification of the heterogeneity 
features that are relevant at the population level and the study of population responses to 
changes in these heterogeneities. 

 
Also of crucial importance for our understanding of biological processes is an 

understanding of what generates heterogeneity, and how it influences the further development 
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of emergent patterns at many different scales.  During the early stages of embryogenesis in 
metazoans, for example, cell diversity -- which is required for further functional 
differentiation -- is generated from the non-homogeneous distribution of sub-cellular 
components, cell division and cell environment interaction. Models need to link the collective 
behaviour of cell populations, which underlie pattern formation, to cell diversification and 
differentiation. Both theoretical and experimental aspects of these questions have been almost 
completely unexplored so far. Finding how molecular and cellular behaviours are coupled in 
these processes is a main challenge of developmental biology.  

 
Close interaction between physicists and biologists skilled in non-linear analysis, 

social scientists and computer scientists has proved to be a key ingredient for advances in 
handling these subjects. 
 

 
Main Challenges 
1. Collective dynamics of homogeneous and/or heterogeneous units 
2. Collective dynamics in heterogeneous environments 
3. Emergence of heterogeneity and differentiation processes, dynamical heterogeneity, 

information diffusion 
 

1.3.1. Collective dynamics of homogeneous and/or heterogeneous 
units  

In the past few years, researchers have devoted considerable effort to studying and 
characterising the emergence of collective phenomena through observation, experiment and 
theory. Research has explored a wide range of systems, from nano-structures and granular 
matter to neuronal dynamics and social organization in the animal kingdom (including human 
societies). 

 
The intrinsic dynamical nature of these phenomena bears marked similarities with the 

physics of non-linear systems. Studies have indeed documented a number of dynamical paths 
to organised collective behaviour having strong resonance with systems in physics: phase 
synchronization in interacting oscillating systems, ordering phase transition in systems of self-
propelled agents, and self-organization and pattern formation in spatially-extended systems 
(e.g. ecological systems). 

 
However, we are far from fully understanding the relation between microscopic 

dynamics and macroscopic properties. For instance, the emergence at the global level of non-
trivial coherent dynamics out of unlocked microscopic oscillators, characterized by time 
scales much shorter than the macroscopic one, still lacks a general theoretical framework. 
While some researchers speculate that transport coefficients may be extracted from the long 
wavelength components of microscopic linear analysis (Lyapunov analysis), no clear 
connection has been established so far. Systems of self-propelled units seem to display 
anomalously large fluctuations in number density – unknown in ordinary equilibrium matter, 
though observed experimentally in granular media – but current theoretical models only 
partially account for such phenomena. 

 
New insights are expected from the intermediate-scale mesoscopic description which 

bridge the microscopic and macroscopic levels by coarse-graining relevant quantities over 
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appropriate local scales of space and time. Due to the importance of fluctuations in out-of-
equilibrium phenomena, the resulting partial differential equations (PDEs) are expected to 
yield stochastic terms, often multiplicative in the coarse-grained fields. The analysis of such 
stochastic PDEs is an open challenge for physicists and mathematicians alike, both from the 
numerical and the analytical point of view, but powerful new techniques, such as the non-
perturbative renormalization group, promise to shed new light on this subject in the near 
future. 

 
Although researchers have so far focussed on systems made up of largely identical 

units, numerous problems of interest involve systems, such as living organisms containing 
diverse cell types or ecosystems of many species composed of units of many different kinds. 
The task of fully understanding the emergence of collective phenomena in such systems 
requires taking into account the interactions among such elements, and poses numerous 
questions. To what extent can heterogeneous systems be reduced to homogeneous ones? In 
other words, is a wide degree of heterogeneity an irreducible feature of certain systems (for 
instance, complex ecological niches), and simply beyond any description in terms of simpler, 
decoupled few-species models? Are the emergent properties of homogeneous systems 
conserved in heterogeneous ones, and what are the specific features that arise at the collective 
level from microscopic heterogeneity? How do new emergent properties relate to previous 
results obtained in a more homogeneous context? Can the theoretical results for homogeneous 
systems be extended towards heterogeneous systems? Can we extend tools already developed 
for modeling collective dynamics to take heterogeneity into account (agent-based simulation, 
for example, can be very naturally extended) or do we have to develop specific new tools? 

 
At the theoretical level, a number of avenues have shown promise. The study of 

simple systems composed of coupled oscillators with heterogeneous frequencies, for example, 
may open new insights into more practical systems, while the important role played by 
synaptic plasticity in neuronal dynamics has long been recognized. 

 
Segregation between different species can be readily described using heterogeneous 

agent-based models, while cells can be seen as an inhomogeneous fluid. Thus, theoretical 
results about the behaviour of such systems (e.g. phase transitions, diffusion in crowed 
heterogeneous media, etc.) could shed new light on many open questions in molecular and 
cellular biology, such as the organization of the cell nucleus, diffusion in membranes, signal 
transduction, or the regulation of transcription. 

 
Finally, it is worth recalling that the theoretical approach must be developed in parallel 

with experimental observations. Model studies need to provide results in a form which can be 
compared and validated with quantitative experiments. In particular, spatial reconstruction 
techniques – allowing to measure the three-dimensional position and trajectory of each unit 
inside a large group - are proving increasingly useful for extracting information at the level of 
microscopic dynamics. 

1.3.2. Collective dynamics in heterogeneous environments 

The complexity of collective dynamics reflects the properties of individual units, the 
interactions between them, but also influences coming from the surrounding environment. 
Assessing how environmental heterogeneity influences collective systems poses a central 
challenge in many fields, including biology, geosciences, computer and social sciences. 
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The complex systems approach should provide a unifying framework for investigating 
the effect of environmental heterogeneity on population dynamics. In particular, progress is 
needed in the following directions: 

• Multiscale analyses: the observation and measurement of environmental heterogeneity 
requires new tools for its detection against noisy backgrounds and its analysis at 
multiple scales. In landscape ecology, for example, researchers need to capture the 
scaling sensitivity of mosaic heterogeneity, yet still lack technical tools for this 
purpose. A similar problem arises in plankton studies: turbulence gives spatial and 
temporal structure to populations on scales ranging from centimetres to the entire 
oceanic basin, and from minutes to years, but observations currently cover only 
portions of this range. 

• Formalization: the capture of heterogeneity within models requires novel means for 
mathematical representation. Equations, algorithms and geometric representations 
must encompass environmental heterogeneity at different scales and describe and 
couple the environment with the underlying dynamics of individual system units. For 
example, long-range hydrodynamical interactions should be included in models 
describing the collective motion of bacteria swimming in viscous fluids. Evolution of 
the vegetal cover has been formalized using differential equations for continuous 
diffusion processes or percolation-based approaches. Yet a mathematical formalization 
of more discontinuous environments, either in terms of environment heterogeneity or 
of constituting units, remains to be achieved. 

• Identification of key environmental features: models cannot include a description of 
all possible sources of heterogeneity, and it is therefore important to identify the 
aspects of heterogeneity that are most relevant for the chosen description of the 
system. Heterogeneity can be examined in terms of information, texture, correlation 
parameters, or coherent structures selected for the collective dynamics under study. 
For example, landscape structures may exhibit different heterogeneity, depending on 
the properties influencing the collective dynamics: contrast often highlights barrier 
effects, while connectivity highlights preferential pathways in the mosaic. In a fluid, 
transport barriers and mixing regions organize the spatial distribution of tracers; 
nonlinear methods make it possible to extract such structures from the velocity field 
and to shed light on the interaction between turbulence and biochemical tracers. 

• Changing environments: heterogeneity is often not defined once and for all, but can 
change over the course of time. Such changes can occur on time scales faster than 
those of the collective dynamics, or manifest themselves as slow drifts in the 
environmental properties. Both kinds of change affect microbiological populations, for 
example, living in environments where food availability and temperature are subject to 
intense fluctuations. An adequate description of adaptation and evolution of collective 
behaviour demands that such fluctuations be taken into account. When the population 
itself induces environmental modifications, it is the feedback between collective 
behaviour and environmental heterogeneity which shapes the coupled population-
environment dynamics, as in the case of the biota-earth interaction in the wake of 
climate change. 

1.3.3. Emergence of heterogeneity and differentiation processe s, 
dynamical heterogeneity, information diffusion 

From genetic networks to social networks and ecospheres, many natural systems 
display endogenous heterogeneity: heterogeneity that emerges from the very functioning of 
the system. Mechanisms producing such heterogeneity include cell differentiation in 
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ontogeny, social and economic differentiation in human societies and speciation in evolution. 
The origin and role of this heterogeneity in the viability and maintenance of these large 
systems is still largely unknown. Yet its importance is recognized in the emergence of 
topological macro-structures which often underlie global functions. Understanding the 
emergence of heterogeneity and its maintenance is thus a challenge for our efforts manage 
and, possibly, control complex systems.  

 
From a simple homogeneous structure (multiple copies of the same object or uniform 

topological space) there are four main types of process through which heterogeneity emerges, 
processes which can be classified in terms of both their Kolmogorov complexity and their 
logical depth (a measure of "organizational complexity" introduced by Charles Bennett). 

• Random emergence: noise upon a regular simple structure (random perturbation). One 
observes an increase in Kolmogorov complexity, but no increase in organizational 
complexity. 

• Coordinated or strongly constrained evolution. Example: the duplication of a gene 
gives two genes, allowing the divergence of their function, or the differentiation of 
individuals in a social structure (specialization, new functions, etc.). It is not 
necessarily associated with a significant increase in Kolmogorov complexity, but with 
an increase in organizational complexity ("crystallization of a computation"). 

• Mixed emergence: randomness and constraints play a role in the dynamical process of 
emergence. Examples: whole molecular and genetic modules are re-used and evolve, 
leading to morphogenetic and functional diversity; speciation by isolation and 
adaptation to various geographical constraints; several copies of an entity subjected to 
various conditions diverge by learning or mutual adjustment. In this case, there is an 
increase in both Kolmogorov complexity and organizational complexity. 

• Emergence by "computation/expression of a pre-existing program". If the 
"computation" is fast and non-random, there is no increase in Kolmogorov 
complexity, nor in organizational complexity. 
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1.4. From optimal control to multiscale governance 
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Introduction 

In acting on a complex system, institutions in charge of its governance first face the 
problem of defining desired objectives. Often, these objectives must integrate the conflicting 
interests and points of view of diverse stakeholders at multiple scales. Then, in order to 
compromise and to decide on policy actions to match the objectives, it is necessary to build an 
appropriate understanding of the phenomena, often through modeling which includes the 
effect of the potential actions. (Here, we touch again on the general problem of modeling and 
reconstructing dynamics from data, addressed in another part of the roadmap). Unfortunately, 
current methods (reinforcement learning, viability, etc.) for assessing policy actions only 
work practically for models in state spaces of low dimensionality. Progress can be sought in 
two directions: either by extending these methods to multiscale and higher dimensionality 
dynamics and multi-level actions (e.g. central and decentralized), or by projecting multiscale 
dynamics into smaller spaces. The use of stylized dynamics, when possible, is another 
research direction that could open new possibilities for managing good policy actions on 
complex dynamics. Finally, dynamics are often uncertain and partially unknown, which 
implies a difficult compromise between exploitation of the better known parts of the dynamics 
and exploration of worse known parts. This problem can be extended to the reformulation of 
the problem (including the objectives). This framework similarly addresses problems of 
control and design. 

 
 

Main Challenges 
1. Extending the scope of optimal control 
2. Projecting complex dynamics into spaces of smaller dimension 
3. Projecting optimal control into high and multiscale dimension space 
4. Extending exploration / exploitation compromise to problem reformulation 
5. Co-adaptation of governance and stakeholders’ objectives 
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1.4.1. Extending the scope of optimal control 

Current methods of optimal control can deal with uncertain non-linear dynamics, and 
with flexible definitions of the objectives (in viability theory, for instance), but they are 
limited by the curse of dimensionality: these methods must sample the state space with a 
given precision, and this requires computational power which increases exponentially with the 
dimensionality of the state space. Extending these methods to spaces of larger dimensions is 
therefore crucial to enable their use in the context of complex systems. 

 
One potential approach for addressing these questions is to develop weaker 

frameworks than optimal control. For instance, control may seek resilience and viability, or 
the maintenance of some important functional properties, without demanding the traditional 
objective of optimal control, which is  to maximise a function. 

 
Finally, in some cases, mixing mathematical optimisation of action policies and 

participatory approaches within an iterative dialogue could provide a good compromise 
between flexibility, social acceptability and rationality. Such approaches would require a 
specific methodological focus on how to define parts of the problem which can be treated 
automatically, and how to integrate the results of these optimising algorithms efficiently with 
other aspects of a group decision process.  

1.4.2. Projecting complex dynamics into spaces of smaller dime nsion 

Another possibility to tackle the limits of current methods for control is to reduce the 
dimensionality of complex dynamics (for instance, through the identification of slower parts 
of the dynamics, the aggregation of the state space, the definition of stylized dynamics and so 
on). This type of work is also very important in negotiation and formulation processes, in 
order to give stakeholders intelligible materials from which they can easily express their 
views. We do not know of reduction approaches directed at the local views of the different 
stakeholders: such approaches would be very interesting. 

 
Dimensionality reduction applies to both data (information) and models. Statistical 

techniques based on Principal Component Analysis determine a linear space containing the 
essential information. They do not apply to non-linear correlation, when projection should 
lead to curved manifolds. New methods are needed to cover this case as well. Non-linear 
Independent Components represent one possible direction of research. Classical model 
reduction techniques, such as averaging, singular perturbations, or calculation of invariant 
manifolds, are based on separation of time and space scales. These methods are currently used 
for applications in physics and chemistry and they should be adapted to take into account the 
specificities of other domains. Furthermore, complex models are only partially specified. For 
instance, models in biology are qualitative and knowledge of parameters is only partial. 
Classical model reduction methods start from models that are completely specified (all 
parameters are known). There is a need for model reduction techniques which can replace 
numerical information by ordinal information (one parameter is much smaller than others) or 
other types of qualitative information.   
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1.4.3. Projecting optimal control into high and multiscale dim ensional 
space 

Another possibility is to extend optimal control (and any developments beyond 
optimal control) to high dimensional, multiscale systems. Such an extension should consider 
the possibility of using distributed actions at different levels, particularly in a decentralized 
way. This is a challenging aim, even if the effect of the controls is perfectly known, because 
not only the system but the control as well is multi-dimensional, with potentially non-linear 
effects of control coordination. Research requires new approaches to advance in this direction. 

 
The scope of this approach might also be extended to cases with multiple objectives at 

different scales. Such a proposition involves introducing the concept of a "complex 
objective," and would probably require new formalisms to describe the architecture and links 
between these multiscale objectives. Since they are described at different levels, current 
control methods are not suitable for tackling this concept. New research should therefore be 
undertaken in this field using either centralized or distributed control. The latter method is 
appealing since it allows different semantics of control and actions at different scales. This 
concept raises several questions, including: how to couple and synchronise controllers; how to 
deal with simultaneous and opposite actions on the system; how to handle the different 
hierarchical levels; how to mix participation/decision making/optimisation; how to implement 
distributed control with a single global objective or multiple local objectives or both. 

1.4.4. Extending the exploration/exploitation trade-off to gove rnance 
analysis 

Decision-makers often have multiple possibilities for action, and from these have to 
choose how to allocate their resources. The eventual outcome of policy actions, relative to the 
objectives, often remain imperfectly known, making policy evaluation very difficult. As a 
consequence, decision makers regularly face a trade-off between further exploration of the 
different available opportunities for action, and exploitation of certain selected opportunities. 
Exploring opportunities requires experiments at appropriate scales in time and space, and 
therefore the expenditure of resources. These expenses must be compared with the potential 
benefit of such exploration, compared with the mere exploitation of known routines. 

 
In the framework of governance, exploration is necessarily made at a given scale of 

time and space, whereas governance initiatives are performed within open systems and 
therefore at several scales of space and time. The challenge is thus to propose methods and 
tools which can go beyond constraints of exploration and bridge the gap between the results 
of exploratory experiments and full-scale in vivo implementation of governance actions. 
These methods would have to take into account the reactive and adaptable nature of the 
targeted systems, as specified in challenge 1. 

1.4.5. Co-adaptation of governance and stakeholders’objective s 

In a multi-level context, identifying the stakeholders and territory concerned is a 
problem in itself.  

The co-existence of different objectives, which may be in conflict, raises problems for 
the management or regulation of the system. Moreover, in some circumstances, the fact that 
these objectives may evolve with the environment (social context) or may adapt to a 
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dynamical context (Ambient Intelligence) makes the system even more complex to manage or 
design.  
We can focus on two challenges: 

1.4.5.1. The static dimension: governance in the context of heterogeneity of stakeholders, 
their points of view and interests 

The challenge is to develop models and methodologies to take into account the large 
heterogeneity of stakeholders’ viewpoints and interests, which is reinforced by the 
entanglement of a large range of space and time scales. Multi-criteria analysis is a starting 
point for solving such problems, but it must be extended to incorporate several parallel 
objectives, and to include the reformulation process. Moreover, the choice of indicators linked 
to given objectives or their achievement must include stakeholder participation and be easy to 
use. On the other hand, the theoretical consequences of the choice of indicators, and 
particularly the potential biases they may introduce, must be carefully investigated. These 
tools and methods should also help determine criteria for analysing the adequacy of the 
objectives (any-time evaluation) and progress towards achieving them. 

1.4.5.2. The dynamical dimension: evolution of stakeholders' objectives and viewpoints in the 
governance process 

The challenge is to develop models and methodologies to take into account the 
feedback loops associated with self-regulation mechanisms, as well as the interdependence of 
particular interests during the governance process. For example, changes in the process by 
which decision-makers and stakeholders interact may alter their conceptions of the objectives, 
and the problem itself, and this alteration may then come back to affect the interaction 
process. This process becomes even more complex in social settings, with efforts to 
coordinate multiple objectives at the collective level. The time scales of model formation, 
decision-making and the interaction process itself have to be taken into account. 

 
These aspects of the problem deal with the question of governance, and focus on the 

participative context where co-learning becomes as important as collective negotiation and 
decision-making. Moreover, the results of the interaction during the governance process can 
lead to new views of the problem, and possibly new governance objectives (taking into 
account, for instance, social acceptability) or new structures in the multiscale architecture of 
the governance organizations. 
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1.5. Reconstruction of multiscale dynamics, emergence 
and immergence processes 
 
Contributors: Paul Bourgine (Ecole Polytechnique), David Chavalarias (Institut des 
Systèmes Complexes de Paris Ile-de-France / CNRS), Jean-Philippe Cointet (Institut des 
Systèmes Complexes de Paris Ile-de-France / INRA ), Michel Morvan (ENS Lyon), Nadine 
Peyrieras (Institut de Neurobiologie CNRS). 
 
Keywords: Micro-macro reconstruction, multi-level experimental protocol, emergence, 
immergence, dynamical systems, multiscale systems. 

Introduction  

The data collected from complex systems are often incomplete and difficult to exploit 
because they are limited to a single level, i.e. refer to observations made on particular scales 
of space and time. Gathering data effectively first requires the definition of common concepts 
and pertinent variables for models at each level. Another important problem is obtaining 
unified and coherent representations useful for integrating different levels of organization and 
for predicting the dynamics of the complete system. This goal can be achieved by defining 
pertinent variables at each level of organization, i.e. at different time (slow/fast) and spatial 
(macro/micro) scales, their relationships, and how they are coupled together in models that 
describe the dynamics at each level. The challenge is to make explicit and meaningful 
connections from micro to macro levels (emergence functions) and from micro to macro 
levels (immergence functions).  
 
 
      Main  Challenges 

1. Building common and pertinent conceptual frameworks in the life sciences.  
2. Achieving coherence in the modeling of complex systems.  
3. Development of mathematical and computer formalisms for modeling multi-level 

and multiscale systems. Computer tools for exploration and formalization 
4. Computer assisted human interactions 

 

1.5.1. Building common and pertinent conceptual frameworks in the  
life sciences 

The data collected from complex systems are often incomplete and therefore difficult 
to exploit. A main challenge is to find common methods to collect data at different levels of 
observation, which are coherent and compatible in the sense that they can be used in order to 
integrate behaviour a different levels of a multi-level (multiscale) system. Thus, it is necessary 
to find multiscale models which allow researchers to define pertinent experimental variables 
at each level and to achieve a common reference frame with data reproducibility in the 
different levels of organization of the complete system.  
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1.5.2. Achieving coherence in the modeling of complex systems 

The goal is to find coherence in the definition of variables and models used at each 
level of the hierarchical system and to make compatible the models that are used to describe 
the dynamics at each hierarchical level of organization at given time and space scales. 

 
As a first step, one must take natural constraints into account and verify fundamental 

laws at each level of description (definition of pertinent species, symmetry laws, physical 
laws, conservation laws and so on). The next step is to connect the description and models 
used at each level to those at other levels: 
(i) Modeling the dynamics at microscopic levels can be useful for defining boundaries for 
global variables and even to obtain correct interpretations for global variables. 
(ii) Modeling the dynamics at macroscopic levels can be helpful for defining local functions 
and variables governing microscopic dynamics.  

1.5.3. Development of mathematical and computer formalisms f or 
modeling multi-level and multiscale systems. 

The complexity of natural and social systems stems from the existence of many levels 
of organization corresponding to different time and space scales. A major challenge of 
complex systems science is to develop mathematical formalisms and modeling methods able 
to capture complete system dynamics by integration of activity at many, often hierarchically 
organised, levels. This goal can be achieved by defining emergence and immergence 
functions and integrating intra-level (horizontal) and inter-level (vertical) couplings.  

Mathematical models used to describe the dynamics of natural and social systems 
involve a large number of coupled variables for quantities at different scales of space and 
time. These models are in general nonlinear and difficult to handle analytically. Therefore, it 
is crucial to develop mathematical methods which allow one to build a reduced system 
governing a few global variables at a macroscopic level, i.e. at a slow time scales and long 
spatial scales. Among open questions, we mention the definition of pertinent variables at each 
level of organization. It is also necessary to obtain emergence (resp. immergence) functions 
that allow analysis to jump from a microscopic (resp. macroscopic) level to a macroscopic 
(resp. microscopic) level, to study the coupling between the different levels and therefore the 
effects of a change at one level of a hierarchy on the dynamics at others. 

Methods based on the separation of time scales already allow the aggregation of 
variables and are used in mathematical modeling for integrating different hierarchical levels. 
However, such multi-level modeling methods need to be extended to computer modeling and 
particularly to IBM (Individual Based Models), and this constitutes a very promising research 
theme. Also, the comparison of multi-level models to experimental data obtained at different 
levels remains a major challenge to be investigated in parallel with the development of 
mathematical and computer modeling methodologies for multi-level systems. 
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1.6. Designing artificial complex systems 
 
Reporter: René Doursat (Institut des Systèmes Complexes / CREA, Ecole Polytechnique) 
 
Contributors: Jean-Christophe Aude (CEA), Sofiane Ben Amor (Eurocontrol), Marc Bui 
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Jean-François Mangin (CEA), Jean Sallantin (CNRS LIRMM). 
 
Keywords: artificial assistants, virtual simulations, functional modeling and regulation, bio-
inspiration, autonomous and evolutionary systems. 

Introduction 

Modeling and simulation are crucial complementary tools in the exploration of 
complex systems. Striking advances in computer networks and high-performance calculation 
have stimulated the rapid development of complex systems research in many scientific fields, 
and strong interactions between disciplines. Information and communication technologies 
represent today a major tool of investigation in complex systems science, often replacing 
analytic and phenomenological approaches in the study of emergent behaviour. In return, 
information technologies also benefit from complex system research. Artificial complex 
systems can be created to analyse, model and regulate natural complex systems. Conversely, 
new and emergent technologies can find inspiration from natural complex systems, whether 
physical, biological or social. 
 

      Main Challenges 
1. Using artificial complex systems for the understanding and regulation of natural 

complex systems 
2. Finding inspiration in natural complex systems for the design of artificial complex 

systems 
3. Building hybrid complex systems. 
 

1.6.1. Using artificial complex systems for the understanding a nd 
regulation of natural complex systems 

Natural complex systems (NCS) include systems found in nature (natural patterns, 
biological organisms, the ecosphere, etc) but also systems spontaneously originating from 
human activity (cities, economies, transportation systems, etc.) A key application of artificial 
complex systems (ACS) is to assist the description, generation and support of these NCS. One 
major challenge is to design and develop systems capable of exploring NCS in a systematic 
way, or regulating such systems. In particular, ACS design can complement human collective 
intelligence by integrating different levels of expertise and harmonising or managing 
contradictions in collaborative works. Such artificial systems can be based on structures and 
principles of function quite different from the natural systems they observe. An ACS could 
serve to regulate, schedule, repair or modify the NCS. The execution of ACS can be 
asynchronous and separate from the NCS, or it can be integrated with it. 
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Examples:  

• Reconstructing the topology of neural connections in the brain by means of neuro-
imagery and artificial vision based on a distributed architecture 

• Observation of interest groups and interaction networks on the Internet (forums, blogs, 
instant messaging) through software agents 

• Airflight dynamics and network 

1.6.2. Finding inspiration in natural complex systems for the design of 
artificial complex systems 

In order to create technological systems that are autonomous, robust and adaptive, new 
engineering approaches must draw inspiration from NCS. For example, in computer security, 
systems able to mimic the biological immune system can provide useful solutions against 
continuously evolving attacks on computer networks. These ACS are built upon intrinsically 
distributed, self-organizing and evolutionary entities. They reproduce the original behaviour 
and organizational principles that are found in NCS but have no equivalent in traditional 
technical design. In some domains, biology could even replace physics at the foundation of 
new engineering principles. 
 

NCS provide rich sources of ideas in the development of decentralized systems which 
can display robustness, modularity, and autonomy in dynamically changing environments 
(i.e., “ubiquitous computing”, “ambient intelligence”). ACS should be able to reproduce the 
dual principles of cooperation and competition that are observed in NCS. 
 

On the other hand, bio-inspired artificial design is not constrained by any fidelity to 
the original NCS. Computer and technological innovation can free designers from 
experimental data or real examples of functioning mechanisms. Examples include neural 
networks inspired by neuroscience and genetic algorithms by Darwinian evolution. ACS 
created this way can also play a heuristic exploratory role for NCS. Engineering inventions 
allow us to better understand, even predict the natural phenomena that inspired them. 
  
Examples:  

• Neuro-inspired artificial intelligence and robotics 
• Collective optimization and swarm intelligence inspired from social animal behaviour 
• Evolutionary robotics 
• Intelligent materials, auto-assembling materials, and morphogenetic engineering 

(nanotechnologies) 
• Ambient intelligence 
• Computer security inspired by immune systems or social interactions 

1.6.3. Design of Hybrid Complex Systems 

The rapid dissemination of computing devices and systems in our society (cellphones, 
PDAs, etc.) and the intricacy and profusion of their interconnections constitute a major case 
of hybrid or “techno-social” complex systems. Such systems can be studied as complex 
communities combining natural and artificial agents. Users can instruct machines, themselves 
capable of autonomous learning and adaptation to their environment. 
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2.1. Complex matter 
 
Reporter: François Daviaud (CEA) 
 
Contributors: Giulio Biroli (CEA), Daniel Bonamy (CEA), Elisabeth Bouchaud (CEA), 
Olivier Dauchot (CEA, Commissariat à l'energie atomique), François Daviaud (CEA), Marc 
Dubois (CEA SPEC), Berengère Dubrulle (CEA), François Ladieu (CEA), Denis L’Hôte 
(CEA). 
  
Keywords: Glassy dynamics, slow relaxations, frustration and disorder, collective behaviors, 
out-of-equilibrium and nonlinear systems, self-organization, turbulence, dynamo action, 
fracture. 

Introduction 

The field of complex and non-equilibrium systems is currently driven by a large body of new 
experiments and theoretical ideas in various branches of physics, from condensed matter 
physics up to ultra-cold atomic physics and biology. Beyond their apparent diversity, these 
systems share a common characteristic: the emergence of complex collective behaviours from 
the interaction of elementary components. Glassy dynamics, out-of-equilibrium systems, the 
emergence of self-organized or self-assembled structures, criticality, percolating systems, 
domain wall propagation and pinning of elastic walls, nonlinear systems, turbulence and 
fracture propagation are some subjects of complex matter that can be addressed only with the 
tools developed for the study of systems of interacting entities. Understanding these 
phenomena also requires the development of new theoretical methods in statistical physics 
and the design of new types of experiments. 
 
 
      Main Challenges 

1. Non-equilibrium statistical physics 
2. Damage and fracture of heterogeneous materials 
3. Glassy dynamics: glasses, spin glasses and granular media 
4. Bifurcations in turbulence: from dynamo action to slow dynamics 

 
 

2.1.1. Non-equilibrium statistical physics 

The long lasting interest for non-equilibrium phenomena has recently experienced a 
noticeable revival, through the development of novel theoretical ideas (especially on the 
symmetries of non-equilibrium fluctuations) and new areas of applications, ranging from 
many examples in condensed matter physics to other branches of physics (heavy ion 
collisions, the early universe) and also to other sciences, including biology (manipulations of 
single molecules). Non-equilibrium phenomena also play an important part in many of the 
interdisciplinary applications of statistical physics (modeling the collective behavior of 
animals, or social and economic agents). 

 
A physical system may be out of equilibrium for either of the following two reasons: 
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• Slow dynamics. The microscopic dynamics of the system are reversible, so that the 
system possesses an authentic equilibrium state. The dynamics of some of the degrees 
of freedom are however too slow for these variables to equilibrate within the duration 
of the experiment. The system is therefore in a slowly evolving non-equilibrium state 
for a very long time (forever in some model systems). The characteristic features of 
this regime of non-equilibrium relaxation, including the violation of the fluctuation 
dissipation theorem, have been the subject of intense activity over the last decade. 
These phenomena are commonly referred to as "aging" phenomena (see the part on 
glassy dynamics). 

• Driven dynamics. The dynamics of the system are not reversible, usually because of 
some macroscopic driving caused by external forces. For instance, an electric field 
induces a non-zero current across the system, thereby destroying the reversibility of 
the underlying stochastic dynamics. The system reaches a non-equilibrium stationary 
state, where it stays forever. There are also systems (at least model systems) where the 
lack of reversibility lies entirely at the microscopic level, and does not rely on any 
macroscopic external driving. The paradigm of such a situation is the celebrated voter 
model. 

 
  One of the most salient advances of the last decade has been the discovery of a whole 
series of general results concerning the symmetries of spontaneous fluctuations in non-
equilibrium states. These theorems, associated with names such as Gallavotti, Cohen, Evans 
and Jarzynski, have been applied and/or tested in many circumstances, both by theory and 
experiment. 
 

Most recent efforts in this area have been devoted to interacting particle systems. This 
broad class of stochastic systems is commonly used to model a wide range of non-equilibrium 
phenomena (chemical reactions, ionic conduction, transport in biological systems, traffic and 
granular flows). Many interacting particle systems can be investigated by analytical methods, 
whereas some of them have even been solved exactly. 

 
Although the usual formalism of equilibrium statistical physics does not apply to out-

of-equilibrium systems, it is now well-known that many of the tools developed in equilibrium 
settings can also be used out-of-equilibrium. This is in particular the case for the framework 
of critical behaviour, where concepts such as scale invariance and finite-size scaling have 
provided (largely numerical) evidence for universality in non-equilibrium systems. It is 
possible to investigate systems in which the non-equilibrium character stems not from the 
presence of gradients imposed, for instance, by boundary reservoirs, but because of the 
breaking of micro-reversibility - that is to say, time-reversal invariance - at the level of the 
microscopic dynamics in the bulk. 

 
A large part of the research activity on non-equilibrium statistical physics is also 

centred on the various phase transitions observed in many contexts. Indeed, many non-
equilibrium situations can be mapped onto each other, revealing a degree of universality 
going well beyond the boundaries of any particular field: for example, self-organized 
criticality in stochastic (toy) sand piles has been shown to be equivalent to linear interface 
depinning on random media, as well as to a particular class of absorbing phase transitions in 
reaction-diffusion models. Another prominent example is the jamming transition which 
bridges the fields of granular media and glassy materials. It has been studied experimentally 
thanks to a model experiment consisting in a sheared layer of metallic disks. Synchronization 
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and dynamical scaling are, likewise, very general phenomena which can be related to each 
other and to the general problem of understanding universality out of equilibrium. 

2.1.2. Damage and fracture of heterogeneous materials 

Understanding the interrelation between microstructure and mechanical properties has 
been one of the major goals of materials science over the past few decades. Quantitative 
predictive models are even more necessary when considering extreme conditions – in terms of 
temperature, environment or irradiation, for example – or long-time behaviour. While some 
properties, such as elastic moduli, are well approximated by the average of the properties of 
the various microstructural components, none of the properties related to fracture – 
elongation, stress to failure, fracture toughness – follow such an easy rule, mostly: (i) because 
of the high stress gradient in the vicinity of a crack tip, and (ii) because, as the more brittle 
elements of microstructure break first, one is dealing with extreme statistics. As a result, there 
is no way that a material can be replaced by an “effective equivalent” medium in the vicinity 
of a crack tip. This has several major consequences 

2.1.2.1. Size effects in material failure 

In brittle materials, for example, cracks initiate on the weakest elements of the micro-
structures. As a result, toughness and life-time display extreme statistics (Weibull law, 
Gumbel law), the understanding of which requires approaches based on nonlinear and 
statistical physics (percolation theory, random fuse models, etc.). 

2.1.2.2 Crack growth in heterogeneous materials 

Crack propagation is the fundamental mechanism leading to material failure. While 
continuum elastic theory allows the precise description of crack propagation in homogeneous 
brittle materials, we are still far from understanding the case of heterogeneous media. In such 
materials, crack growth often displays a jerky dynamics, with sudden jumps spanning over a 
broad range of length-scales. This is also suggested from the acoustic emission accompanying 
the failure of various materials and - at much larger scale - the seismic activity associated with 
earthquakes. This intermittent “crackling” dynamics cannot be captured by standard 
continuum theory. Furthermore, growing cracks create a structure of their own. Such 
roughness generation has been shown to exhibit universal morphological features, 
independent of both the material and the loading conditions, reminiscent of interface growth 
problems. This suggests that some approaches issued from statistical physics may succeed in 
describing the failure of heterogeneous materials. Let us finally add that the mechanisms 
become significantly more complex when the crack growth velocity increases and becomes 
comparable to the sound velocity, as in impact or fragmentation problems, for instance. 

2.1.2.3. Plastic deformation in glassy materials 

Because of high stress enhancement at crack tips, fracture is generally accompanied by 
irreversible deformations, even in the most brittle amorphous materials. While the physical 
origin of these irreversible deformations is now well understood in metallic materials, it 
remains mysterious in amorphous materials like oxide glasses, ceramics or polymers, where 
dislocations cannot be defined. 
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2.1.3. Glassy dynamics 

2.1.3.1. Glasses 

The physics of glasses concerns not only the glasses used in everyday life (silicates), 
but a whole set of physical systems such as molecular glasses, polymers, colloids, emulsions, 
foams, Coulomb glasses, dense assemblies of grains, etc. Understanding the formation of 
these amorphous systems, the so-called glass transition, and their out-of-equilibrium 
behaviour is a challenge which has resisted a substantial research effort in condensed matter 
physics over the last decades. This problem is of interest to several fields from statistical 
mechanics and soft matter to material sciences and biophysics. Several fundamental open 
questions emerge: is the freezing due to a true underlying phase transition, or is it a mere 
crossover with little universality in the driving mechanism? What is the physical mechanism 
responsible for the slowing down of the dynamics and glassiness? What is the origin of the 
aging, rejuvenation and memory effects? What are the common concepts that emerge to 
describe the various systems evoked above, and what remains specific to each of them? 

 
Interestingly, however, evidence has mounted recently that the viscous slowing down 

of super-cooled liquids and other amorphous systems might be related to the existence of 
genuine phase transitions of a very singular nature. Contrary to usual phase transitions, the 
dynamics of glass-formers dramatically slows down with nearly no changes in structural 
properties. We are only just beginning to understand the nature of the amorphous long-range 
order that sets in at the glass transition, the analogies with spin-glasses and their physically 
observable consequences. One of the most interesting consequences of these ideas is the 
existence of dynamical heterogeneities (DH), which have been discovered to be (in the space-
time domain) the counterpart of critical fluctuations in standard phase transitions. Intuitively, 
as the glass transition is approached, increasingly larger regions of the material have to move 
simultaneously to allow flow, leading to intermittent dynamics, both in space and in time. The 
existence of an underlying phase transition and of dynamical heterogeneities should 
significantly influence the rheological and aging behaviours of these materials, which are 
indeed quite different from those of simple liquids and solids. As a consequence, progress in 
the understanding of glassy dynamics should trigger several technological advances. An 
important example where the peculiar properties of glasses are used in technology is the 
stocking of nuclear waste. 

 
From an experimental point of view, the major challenges for the future have been 

transformed not only because progress in the domain has led to radically new questions, but 
also because new experimental techniques now allow researchers to investigate physical 
systems at a microscopic scale. New challenges for the years to come are: i) To study the 
local dynamical properties in order to unveil which changes in the way molecules evolve and 
interact makes the dynamics glassy, in particular why the relaxation time of supercooled 
liquids increases by more than 14 orders of magnitude in a small temperature window; ii) To 
provide direct and quantitative evidence that glassy dynamics is (or is not) related to an 
underlying phase transition; iii) To study the nature of the dynamical heterogeneities 
(correlation between their size and their time evolution, fractal dimensions, etc.); iv) To 
investigate the nature of the out-of-equilibrium properties of glasses, such as violation of the 
fluctuation-dissipation theorem, intermittence, etc. 
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From a theoretical point of view, the major challenge is to construct and develop the 
correct microscopic theory of glassy dynamics. This will consist both in unveiling the 
underlying physical mechanisms that give rise to slow and glassy dynamics and in obtaining a 
quantitative theory that can be compared to experiments. The main focus will again be on 
local dynamic properties, their associated length-scale and their relation to the growing time 
scales and the global properties of glassy dynamics.  

2.1.3.2. Spin glasses 

The expression “spin glasses" was invented to describe certain metallic alloys of a 
non-magnetic metal with few, randomly substituted, magnetic impurities, where experimental 
evidence for a low temperature phase showed a non-periodic freezing of the magnetic 
moments with a very slow and strongly history-dependent response to external perturbations. 
Basic fundamental ingredients of spin glasses are disorder and frustration. The frustration 
consists in the fact that the energy of all the pairs of spins cannot be minimized 
simultaneously. The theoretical analysis of spin glasses lead to the celebrated Edwards-
Anderson model: classical spins on the sites of a regular lattice with random interactions 
between nearest-neighbour spins. This has led to many developments over the years, and the 
concepts developed for this problem have found applications in many other fields, from 
structural glasses and granular media to problems in computer science (error correction codes, 
stochastic optimization, neural networks, etc.). 

 
The program of developing a field theory of spin glasses is extremely hard, with 

steady, slow progress. The theory is not yet able to make precise predictions in three 
dimensions. Numerical simulations face several difficulties: we cannot equilibrate samples of 
more than a few thousand spins, the simulation must be repeated for a large number of 
disorder samples (due to non-self-averaging), and the finite size corrections decay very 
slowly. 

 
Spin glasses also constitute an exceptionally convenient laboratory frame for 

experimental investigations of glassy dynamics. The dependence of their dynamical response 
on the waiting time (aging effect) is a widespread phenomenon observed in very different 
physical systems such as polymers and structural glasses, disordered dielectrics, colloids and 
gels, foams, friction contacts, etc. 

 2.1.3.3. Granular Media close to the Jamming transition 

Common experience indicates that as the volume fraction of hard grains is increased 
beyond a certain point, the system jams, stops flowing and is able to support mechanical 
stresses. The dynamical behaviour of granular media close to the ’jamming transition’ is very 
similar to that of liquids close to the glass transition. Indeed, granular media close to jamming 
display a similar dramatic slowing-down of the dynamics as well as other glassy features like 
aging and memory effect. One of the main features of the dynamics in glass-forming systems 
is what is usually called the cage effect, which accounts for the different relaxation 
mechanisms: at short times, any given particle is trapped in a confined area by its neighbours, 
which form the so-called effective cage, leading to a slow dynamics; at sufficiently long 
times, the particle manages to leave its cage, so that it is able to diffuse through the sample by 
successive cage changes, resulting in a faster relaxation. Contrary to standard critical slowing 
down, this slow glassy dynamics does not seem related to a growing static local order. For 
glass-formers it has been proposed instead that the relaxation becomes strongly heterogeneous 
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and dynamic correlations build up when approaching the glass transition. The existence of 
such a growing dynamic correlation length is very important in revealing some kind of 
criticality associated with the glass transition. 

 
One can, for example, study the dynamics of a bi-disperse monolayer of disks under 

two different mechanical forcings, i.e. cyclic shear and horizontal vibrations. In the first case, 
a “microscopic” confirmation of the above similarity has been obtained and the second can 
provide the experimental evidence of a simultaneous divergence of length and time scales 
precisely at the volume fraction for which the system loses rigidity (jamming transition). 

2.1.4. Bifurcations in turbulence: from dynamo action to slow 
dynamics 

2.1.4.1. Dynamo action   

Dynamo action consists in the emergence of a magnetic field through the motion of an 
electrically conducting fluid. It is believed to be at the origin of the magnetic fields of planets 
and most astrophysical objects. One of the most striking features of the Earth's dynamo, 
revealed by paleomagnetic studies, is the observation of irregular reversals of the polarity of 
its dipole field. A lot of work has been devoted to this problem, both theoretically and 
numerically, but the range of parameters relevant for natural objects are out of reach of 
numerical simulations for a long time to come, in particular because of turbulence. In 
industrial dynamos, the path of the electrical currents and the geometry of the (solid) rotors 
are completely prescribed. As this cannot be the case for the interiors of planets or stars, 
experiments aimed at studying dynamos in the laboratory have evolved towards relaxing these 
constraints. The experiments in Riga and Karlsruhe showed in 2000 that fluid dynamos could 
be generated by organizing favourable sodium flows, but the dynamo fields had simple time 
dynamics. The search for more complex dynamics, such as exhibited by natural objects, has 
motivated most teams working on the dynamo problem to design experiments with less 
constrained flows and a higher level of turbulence. In 2006, the von Karman sodium 
experiment (VKS) was the first to show regimes where a statistically stationary dynamo self-
generates in a fully turbulent flow. It then evidenced other dynamical regimes for the first 
time, including irregular reversals as in the Earth and periodic oscillations as in the Sun. 

 
These complex regimes, involving a strong coupling between hydrodynamic and 

MHD, need to be studied in detail. In particular, they reveal that although the dynamo 
magnetic field is generated by the turbulent fluctuations, it behaves as a dynamical system 
with a few degrees of freedom. 

 
Theoretical predictions regarding the influence of turbulence on the mean-flow 

dynamo threshold are scarce. Small velocity fluctuations produce little impact on the dynamo 
threshold. Predictions for arbitrary fluctuation amplitudes can be reached by considering the 
turbulent dynamo as an instability (driven by the mean flow) in the presence of a 
multiplicative noise (turbulent fluctuations). In this context, fluctuations can favour or impede 
the magnetic field growth, depending on their intensity or correlation time. We can use direct 
and stochastic numerical simulations of the MHD equations to explore the influence of 
turbulence on the dynamo threshold.  
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2.1.4.2. Bifurcations in turbulence  

 At high Reynolds numbers, some systems undergo a turbulent bifurcation between 
different mean topologies. Moreover, this turbulent bifurcation can conserve memory of the 
system history. These aspects of the turbulent bifurcation recall classical properties of 
bifurcations in low-dimensional systems, but the bifurcation dynamics is really different, 
probably because of the presence of very large turbulent fluctuations. Future studies will be 
concerned with the universal relevance of the concept of multistability in average for states of 
highly fluctuating systems and by the transitions between these states (e.g. magnetic 
inversions of the Earth, climate changes between glacial and interglacial cycles). The slow 
dynamics of turbulent systems, in the case where exchanges of stability can be observed for 
some global quantities or some averaged properties of the flow, should also be studied, and an 
attempt made to construct nonlinear or stochastic models of those transitions. 

 
In the case of turbulent flows with symmetry, it is also possible to construct a 

statistical mechanics, and to develop a thermodynamic approach to the equilibrium states of 
axisymmetric flows at some fixed coarse-grained scale. This allows the definition of a mixing 
entropy and derivation of Gibbs states of the problem by a procedure of maximization of the 
mixing entropy under constraints of conservation of the global quantities. From the Gibbs 
state, one can define general identities defining the equilibrium states, as well as relations 
between the equilibrium states and their fluctuations. This thermodynamics should be tested 
in turbulent flows, e.g. von Karman flow. Effective temperatures can be measured and 
preliminary results show that they depend on the considered variable, as in other out-of-
equilibrium systems (glass). Finally, we can derive a parameterisation of inviscid mixing to 
describe the dynamics of the system at the coarse-grained scale. The corresponding equations 
have been numerically implemented and can be used as a new subgrid scale model of 
turbulence. 
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2.2. From molecules to organisms 
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Introduction 

Biological investigations provide knowledge and are expected, at some point, to 
translate into clinical research and medical advances for the treatment of human 
physiopathology. We hope to find cures for diseases and other key medical conditions, if 
possible, or at least to understand those conditions better. Yet it is increasingly clear that 
better understanding can only arise from a more holistic or integrative view of biological 
systems. We thus need to develop a better grasp of biological systems as complex systems, 
and to transfer this understanding into clinical research. Doing so requires a strongly 
interdisciplinary approach, and should provide novel insights into physiology and pathology.  

 
After a brief presentation of the general aims and concepts discussed in this topic, we 

list and offer details on four main challenges. How investigations should be driven in biology 
is a matter of debate. Should they be data-driven, object-driven or hypothesis-driven? Do we 
at least agree about the aim of deciphering the causal chains underlying biological processes? 
Do we expect models to bring insights and knowledge about the behaviour of biological 
systems, and to make accurate predictions? 
 

Recent advances in functional genomics and in the study of complex diseases (such as 
cancer, autoimmunity or infectious diseases, mitochondrial diseases or metabolic syndrome) 
have shown the necessity for an alternative way of thinking in biology, a view in which 
pathology and physiology result from interactions between many processes at different scales. 
The new scientific field of systems biology has emerged from this perspective; it focuses on 
the study of gene, protein, and biochemical reaction networks and cell population dynamics, 
considered as dynamical systems. It explores the biological properties resulting from the 
interaction of many components, investigating processes at different scales and their overall 
systemic integration. Complex systems science provides a conceptual framework and 
effective tools for unravelling emergent and immergent features from molecules to organisms 
and vice versa. The term "immergence" is meant to imply that some macro-level constraints 
cascade back in a causal way onto micro-levels. Both emergent and immergent properties 
should be understood from the multiscale reconstruction of data recorded at the appropriate 
spatial and temporal scales. We expect to find generic processes (design patterns for computer 
science) which apply from upper to lower levels of organization, and vice versa, and which 
allow their coupling e.g. synchronisation, reinforcement, amplification, inhibition, achieved 
through basic processes such as signalling through molecular interactions, diffusion, vesicular 
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transport, ionic transport, electric coupling, biomechanical coupling and regulation of 
molecules and macromolecules characteristic features (including their concentrations). 

 
Complex systems almost always involve a wide range of scales both in time (typically 

femtoseconds in chemical reactions, seconds in metabolism processes, days to months in 
cells, and years in an living organism) and space (typically nanometers for molecular 
structures, micrometers for supramolecular assemblies, organelles and cells, centimeters for 
tissues and organs, and meters for organisms). Finding the pertinent space and time scales for 
experimentation and modeling is a major issue. Classical approaches (biochemistry, cellular 
and molecular biology, behavioural and cognitive studies, etc.) usually have a “preferred” 
scale set by default, mainly due to the principle protocols and experiments being designed to 
work only at a specific scale. This makes back and forth interactions between different scales 
in observations, experimentations, models and simulations a very exciting transdisciplinary 
challenge. 

 
Variation in biological systems raises the issue of an average, typical or representative 

behaviour. Determining such quantities, and knowing if they are scientifically useful,  
requires characterizing and measuring variability and fluctuations at the molecular, single cell, 
cell population and physiological levels. The origin and functional significance of fluctuations 
in biological systems, even the scales of space and time on which they occur, remain largely 
unknown. Their functional significance might be approached through their multiscale 
transmission and possible amplification, reduction/damping or role in mediating bifurcations. 

 
Obviously, understanding will not arise from a one-to-one description and modeling of 

organisms (virtual cell, virtual organism) but rather from the correct identification of which 
components are relevant for a given problem and the reconstruction of models focused on the 
mechanisms involved. Such a reconstruction should use mathematical and physical tools, 
some borrowed from out-of-equilibrium thermodynamics and dynamical systems. New tools 
will also be required to answer specific questions of biology. Ultimately, injecting systemic 
vision and using complex systems principles and conceptual frameworks for a better 
understanding of human physio-pathology could lead to novel differential diagnosis and 
improve medical care. 
 

 
Main Challenges 
1. Fluctuations and noise in biological systems 
2. Stability in biology  
3. Multiscaling 
4. Human physiopathology 

 
 

2.2.1. Fluctuations and noise in biological systems 

  Modern biology has in its development depended heavily on the notion of average 
behaviours and average individuals. But this conceptual framework has recently been 
challenged by empirical observation. Quantitative measurements of living single cells, or 
within such cells, have revealed extensive variability and fluctuation of cellular dynamics 
between different cells or between different times within the same cell. These observations 
open a new conceptual framework in biology, in which noise must be fully considered if we 
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are to understand biological systems; this view departs from the classical framework which 
considered noise and fluctuations it mere measurement error or as "simple" thermodynamic 
fluctuations which should be suppressed by cells. 
 

This new point of view raises many questions, as well as both practical and theoretical 
issues likely to deeply modify our understanding of biological systems. However, to tackle 
these questions, we need to develop a complete scientific program of investigation ranging 
widely from precise measurements through to analysis of the origin and functional role of 
stochasticity in biological systems. Among the main breakthroughs, we need to: 

• Improve the technology for quantitative measurements of noise and fluctuations in 
single cells, cell populations, tissues, organs and individuals. In particular, it will be 
necessary to identify the characteristic times at each level of organization and the most 
appropriate experimental indicators. 

• Identify the mechanisms by which noise and fluctuations arise in biological systems. 
In particular, what are the modalities of multiscale transmission of fluctuations? Are 
fluctuations amplified or reduced/damped from one scale to the others? Are they 
important with respect to bifurcations in the organism/cell fate? 

• Understand the functional significance of fluctuations in different biological systems. 
For instance, it has been proposed that fluctuations can enhance the robustness of 
living beings. However, other processes can be envisaged (e.g. stochastic resonance, 
increased signaling rates, cell differentiation, evolution, etc.). Such a functional 
significance supposes that biological systems are able to control the level of noise. 

• Delineate possible mechanisms by which biological systems may control their level of 
fluctuation (negative/positive feedback loops in biochemical networks, neuronal 
adaptation in cortical networks, adaptive mutations and mutation hotspots, regulations 
and networks in the immune system). 

• Question the meaning of usual averaging processes in experimental biology. In the 
case of biochemical networks, can data gathered on cell populations be used to infer 
the actual network in a given single cell? Similar issues arise in the case of 
connectivity structures of cortical networks and cell lineage reconstruction. 

  
These issues can be addressed in various biological systems including (but not limited 

to): 
• Transcription and regulation networks: it is now clear that the transcriptional activity 

of the cell is highly stochastic. Some of the molecular causes of this stochasticity have 
been identified, yet its precise origin and regulatory mechanisms remain to be 
discovered. Doing so will first require the development of adequate measurement 
methodologies to enable us to quantify these fluctuations at different time scales in 
single cells. 

• Neurons and neuronal networks: the so-called "on-going" activity within cortical 
circuits is a spontaneous activity generated by the recurrent nature of these networks. 
It has long been considered a mere noise added to the environmental signals. 
However, more recent studies have proposed a real functional role in which ongoing 
activity could facilitate signal spreading and be implicated in adaptive processes. 
Inhibitory effects have been shown to reduce variability at both the single-cell and 
population level. 

• Diversity of the immune system: The immune system is characterized by diversity at 
different levels. Lymphocyte receptor diversity, populations of effectors and 
regulators, cell-population dynamics, cell selection and competition, and migration 
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through the whole organism are the result of stochastic or selection mechanisms 
whose impact on the overall efficiency of the system needs to be further characterized. 

• Uncontrolled variability is often accused of being a source of major perturbations in 
the fate of organisms. Examples can be found in the process of aging, cancer, 
autoimmunity, infections or degenerative diseases. Yet the precise influence of noise 
is still open to debate. In particular, one point is to determine to what extent 
degenerative processes are a consequence of noise accumulation, a variation in noise 
properties or of rare stochastic events. 

• Variability at the genetic level is the major engine of evolution. But genetic variability 
may be indirectly regulated according to the spatio-temporal characteristics of the 
environment (selection for robustness, for example, or for evolvability). Moreover, 
clonal individuals may be very different from each other due to intrinsic and extrinsic 
phenotypic variability. The mechanisms by which heritable and non-heritable 
variability are regulated still need to be characterized and their influence on the 
evolutionary process is largely unknown. 

 
Concerning the modeling of fluctuations, several mathematical and physical tools 

exist, but these need to be improved. Thus: 
• Stochastic models are largely used in molecular systems biology. The simulation 

algorithms (Gillespie algorithm) use the Delbrück-Bartholomay-Rényi representation 
of biochemical kinetics as jump Markov processes. In order to improve the 
performance of these methods (which are costly in time) several approximate schemes 
have been proposed, for instance the approximation of Poisson variables by Gaussians 
(tau-leap method). Hybrid approximations are more appropriate when the processes are 
multiscale and these approximations could be developed by combining averaging and 
the law of large numbers. In certain simple cases, the master equation can be exactly 
solved. 

• It is also interesting to transfer ideas from statistical physics to biology. For 
instance, fluctuation theorems, which concern the occurrence of out-of-equilibrium 
fluctuations in heat exchanges with the surrounding environment and work theorems, 
concerning thermodynamic fluctuations in small systems close to equilibrium, could be 
applied to characterize fluctuations in gene networks, DNA transcription processes and 
the unfolding of biomolecules. 

2.2.2. Stability in biology 

We encounter various definitions of stability depending on the phenomenon, the 
model or the community proposing the concept. Frequently invoked concepts include 
homeostasis in relation to metabolic control, the Red Queen concept in evolution describing 
continuous development to sustain stable fitness in a changing environment, robustness in 
systems biology referring to insensitivity with respect to perturbations, or canalization and 
attractors in developmental biology and ecology. 
  
The main challenges are: 
 

1) In seeking to understand the stability of biological systems, which are always subject to 
both intrinsic and extrinsic perturbations, we need to develop the notion of steady state, or 
more generally attractor. We need new mathematical concepts to capture the subtleties of 
biological stability. 
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• Finite-time stability is a concept that can be used to define stability in the case when 
the system is known to operate or to preserve its structure unchanged over a finite 
time. We are interested in the conditions under which the system's variables remain 
within finite bounds. Can we extend such formalism to other properties (oscillations, 
optimal biomass production, etc.)? 

• Finite time stability depends on the existence of subsystems with different relaxation 
times. It is thus important to develop methods allowing to estimate the largest 
relaxation time of subsystems. For compound systems, how can we relate the 
relaxation times of the elements to that of the system? 

• The notion of resilience is also a generalization of stability that is particularly 
appealing in this context. Indeed, it focuses on the ability to restore or maintain 
important functions when submitted to perturbations. The formalizations of this 
concept, founded on dynamical system properties (measure of attraction basin sizes), 
or even on viability theory (cost to return into a viability kernel) should become more 
operational to favour a wider diffusion. 

 
2) The functioning of multicellular organisms occurs at the level of the cellular 
population, not of the individual cell. Furthermore, the stability of a cell population 
(tissue) is generally different from that of the individual cell. Cells extracted from 
tumours, for example, can reverse to normal activity when injected into healthy tissue. In 
this context, how can we define and study the stability of a population in relation to the 
stability of individuals? In addition, the same relation should be considered in the context 
of a developing organism taking into account differentiation and organogenesis. These 
processes are examples of symmetry-breaking, and we would like to determine whether 
symmetry arguments can be used in the study of stability properties. 

 
 3) Systems biology studies robustness as an important organizing principle of biological 
systems. As pointed out by H. Kitano, cancer is a robust system with some points of 
fragility. Thus, finding treatments and cures for diseases may consist in determining the 
fragility points of a robust system. In order to answer this question, we need good models, 
new mathematical theories and computer tools to analyse properties of models and new 
experimental techniques to quantify robustness. 

 
4) Complexity and stability. In the modeling process, we should be able to zoom in and 
out between various levels of complexity. Stable properties of the system could be those 
that are common to several levels of complexity. More generally, is there a connexion 
between stability and complexity? 

2.2.3. Multiscaling 

Biological processes involve events and processes taking place over many different 
scales of time and space. A hierarchical relationship among these scales enters our description 
only because it corresponds to our subjective views, usually based on our limited 
experimental access to the system. Multiscale approaches drawn from theoretical physics 
have been developed essentially in an unidirectional (bottom-up) way, to integrate parameters 
and mechanisms at a given scale into effective, and hopefully reduced, descriptions at higher 
scales. However, lower-scale properties are directly coupled with properties of the higher 
scales (e.g. 3D chromosome distribution in the nucleus partly governs gene expression, which 
itself participates in nuclear architecture). The very complexity of living systems and 
biological functions lies partly in the presence of these bidirectional feedbacks between higher 
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and lower scales which have become established during the course of evolution. Self-
consistent or iterative “up-and-down” approaches therefore need to be introduced to account 
for the strong interconnections between the levels and ensuing circular causal schemes. 

2.2.3.1. Multiscaling vs. self-scaling 

To properly account for the behaviour of a biological system, a multiscale approach 
should jointly tackle all the scales, with no way to skip any microscopic details or 
macroscopic assemblies. Obviously, such modeling would rapidly reach a high level of 
complexity, and would ultimately be intractable. This limitation on multiscale descriptions 
imposes a drastic challenge to the paradigm underlying the modeling of biological systems. 
  

To reduce the level of complexity, it has been proposed (Lavelle/Benecke/Lesne) to 
devise models taking the biological function as a starting point and guideline for directing 
integrated modeling and using supervised data analysis to parallel the biological logic. 
Decomposition is achieved by dissecting its logic and implementation into basic processes 
involving features at different scales and are already integrated in their formulation. More 
generally, such a decomposition results in “self-scaled” functional modules, independent of 
the arbitrary description or observation scale. As function-dependent representations are 
inherently multiscale in nature, and the function cannot be discontinuous, this paradigm-
transition consequently requires a scale-continuous model. Scale-continuous descriptions may 
at first sight look prohibitively complex and non-realistic; however, when such a scale-
continuous model is constructed in the context of a function-dependent representation, the 
dimensionality of the variable-vector to be considered collapses. 

2.2.3.2. Emergence vs. immergence 

Modeling of biological systems requires new mathematical formalisms capable of 
reflecting the complete dynamics of a system by integrating its many levels. This can be 
achieved by defining "micro to macro" (emergence) and "macro to micro" (immergence, 
microemergence or downward causation) functions and integrating intra-level (horizontal) 
and inter-level (vertical) couplings. The definition of pertinent variables at each level of 
organization, and a description of their relations, is necessary to obtain emergence (resp. 
immergence) functions that allow analysis to jump from a microscopic (resp. macroscopic) 
level to a macroscopic (resp. microscopic) level. Emergence and immergence phenomena are 
well-known in biology, such as the links between the structure topology of tissues and cell 
behaviour. But these causal relationships are difficult to decipher, mainly because the scales at 
which they occur are not necessarily those at which researchers make observations and do 
experiments. 

• How should we select relevant space and time scales in our 
experiments/models/theories (self scaling rather than exhaustive multiscaling)? 

• How can we perform multiscale reconstructions from data recorded at different scales? 
On which spatial and temporal scales will the model/simulation obtained be valid? 

2.2.4. Human physiopathology and animal models 

Human physio-pathology creates uncertainties with constantly moving frontiers 
between disciplinary fields such as neurology, neurosciences, psychiatry, immunology, 
cardiovascular, metabolism and endocrinology. Human patho-physiology is characterised by 
the progressive dysfunction and deterioration of processes acting on multiple space and time 
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scales with non-linear interactions between physiological/biological functions, cognition, 
emotions and social consequences. Problems can result initially from local conflict between 
internal and external signals (e.g. dizziness), but this conflict can expand, diffuse and create 
additional causal loops with multiple pathogenic reciprocal interactions. Functional problems 
can be primary or secondary effects of spontaneous adaptive mechanisms aiming to counter 
primary injury and dysfunction, and it is important to dissociate them. 

Two main challenges are: 
• To apply complex systems principles and theoretical frameworks to the design of 

experimental studies and the analysis of data at different scales (neurological, 
physiological, behavioral, neuro-psychological, immunological) from individual or 
large patient populations; 

• To search for cross-correlations and interactions in order to obtain new insights into 
pathogenic primary or secondary mechanisms. This could lead to new, more sensitive 
differential diagnostic tools, but also to better medical care or functional re-adaptation. 
There is a need to go beyond a limited multi-disciplinarity of parallel different 
approaches and use complex systems tools to combine data from different fields and 
gain further insight. 
 
This issue concerns the whole of internal and general medicine, immunology, 

neuroscience, psychiatry, geriatrics, pediatrics, functional re-education, public health, and 
complex systems science. Examples of functional problems, some of which have no 
measurable organic basis, include vertigo - dizziness and equilibrium problems and fear of 
falling in the elderly, isolated hearing loss, tinnitus, learning problems – dyslexia, and also 
neuro-degenerative diseases, types of dementia, Lewy-Body and Alzheimer's diseases. What 
causes the switch from physiological auditory noise to perceived unwanted signal in the case 
of tinnitus in the absence of neuro-ontological findings? 

 
Major questions include the significance of instantaneous fluctuations of 

measurements (physiologic, behavioural, e.g. in the case of dementia) in relation to patho-
physiology and progressive degeneration of cortical-subcortical circuits. Other examples 
could be given in immunology: analysis of the functionalities of the immune system in 
physiological (ontogeny to aging, gestation) and pathological conditions (cancer, 
autoimmunity, infections), and interactions with other biological systems such as the nervous, 
endocrine, metabolic systems. This is based on dynamical analysis of fluid lymphoid cell 
populations, quantification and identification of phenotype and functions, repertoires, 
genomics and proteomics. 
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2.3. Physiological functions 
 
Contributors: Catherine Christophe (INRA), Christophe Lecerf (Ecole des Mines Ales), 
Nadine Peyrieras (Institut de Neurobiologie CNRS), Jean Sallantin (CNRS LIRMM) 
 
Keywords: in vivo observation and measurement devices, spatial and temporal multiscale 
observations, subcellular and supra-cellular functions, organism-environment interaction, 
ontogenesis, physiological disorders.  

Introduction    

Physiological functions result from the integration of cells, tissues and organ 
properties in the context of the whole organism interacting with its environment. A complex 
system approach to physiological functions should lead to an iterated cycle combining 
relevant measurements and experimentation, modeling and simulation. Such a goal requires 
building multimodal investigation devices for simultaneous in vivo recording at different 
spatial and temporal scales of relevant parameters as well as designing theoretical methods 
and tools for appropriate modeling and computer simulation.  

 
           Expected results include the design of new investigation devices and theoretical 
methods and tools for observing, modeling, understanding and possibly controlling 
physiological functions. 

 
 
      Main Challenges 

1. Integrating multimodal measurements and observations of physiological activities 
at different spatial and temporal scales. 
2. Characterizing the contextual features which determine the onset of a physiological 
function, or their maintenance and modulation. 
3. Investigating the relationship between the ontogenesis of a physiological function 
and its potential disorders. 
 

2.3.1. Integrating multimodal measurements and observations of 
physiological activities at different spatial and temporal sc ales. 

An integrated observation of sub cellular and supra cellular processes requires either: 
(i) To translate in the same spatial and temporal reference frame heterogenous data recorded 
in the same organism but at different moments, or  
(ii) To design new devices capable of simultaneously recording multimodal data. 

 
The first goal can be achieved through available methods going from spatio-temporal 

matching to data fusion. These methods are limited by recalibration problems and errors 
(whatever the rigid or elastic transformations applied). 

 
The second option would be a real breakthrough and provide a generation of totally 

new instrumentation offering instantaneous access to essential structural and dynamic 
variables (chemical, electrical, mechanical, etc.) at all relevant spatio temporal scales. The 
trend in this direction is exemplified by macroscopic data acquisition in medical imaging with 
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optical-PET and PET-CT devices and, for vital physiological variables, by ambulatory 
integrated sensors providing real-time patient state tracking in a normal environment. In the 
domain of vegetal biology, phenotypic plant platforms lead to the observation of flow from 
roots to leaves at different time scales. Integrating such synchronous, multimodal, multiscale 
observations in relevant models should provide a good basis for the reconstruction of 
physiological functions.  

2.3.2. Characterizing the contextual features determining t he onset of 
a physiological function, or its maintenance and modulation. 

The objective is here to view the function as an integration of subfunctions which can 
be investigated from different perspectives or using perturbative and comparative approaches. 
Different factors or conditions, such as resting versus moving, diet-nutrition, or training, can 
influence and move the system towards new functioning modes. Comparative physiology 
provides a way to study the conservation or divergence of physiological functions. This 
approach is relevant for respiration and locomotion in the animal kingdom as well as for fruit 
maturation in the field of vegetal biology. 

 
Physiological functions should be characterized through the extraction of high-level 

variables, loosely akin to “thermodynamics variables”, or along the lines of allometry i.e. 
preservation of characteristics over the size variations. More generally, we should be able to 
define invariants (or invariant relationships) attached to physiological functions and the 
conditions for their conservation.  

2.3.3. Investigating the relationship between the ontogenesis of a 
physiological function and its potential disorders. 

Physiological functions should be explored through their set up during ontogenesis, 
maturation and maintenance during growth, adulthood and ageing. The dynamical behaviour 
of physiological functions should be explored also during pathological events.  
 
Examples: 

• Heart embryology: progressive formation of anatomical structures and 
functional patterns with ill-posed problems related to the partial observations at 
our disposal (i.e interpolation of  objects with high structural variation from the 
architectonic viewpoint, installation of nodal tissue functions or sinusal electric 
waves, etc.) 

• Schizophrenia: effects on the highest cognitive levels of the modifications 
induced by the disease at the level of more elementary neurological functions 
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2.4. Ecosystemic complexity 
 
Contributors: Olivier Barreteau (Cemagref), Paul Bourgine (Ecole Polytechnique), David 
Chavalarias Institut des Systèmes Complexes de Paris Ile-de-France / CNRS), Cédric 
Gaucherel (INRA), François Houllier (INRA), Ioan Negrutiu (ENS Lyon), Nadine Peyrieras 
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Keywords: ecological dynamics, adaptation and evolution, ecological services, multi-
functionality of the ecosystems, integration of data, coupling of models, space-time dynamics, 
multiscale models, disturbance and resilience, stability and dynamic transition, emerging 
behaviour, feedback and retroaction, functional organization.  

Introduction    

Defined as the close association of an abiotic environment and a collection of living 
organisms, an ecosystem is characterized by a great number of physicochemical factors and 
biological entities which interact with each other. The multiplicity and diversity of these 
interactions as well as their involvement of a vast range of levels of organization and a broad 
spectrum of space and temporal scales justify the expression of “ecosystemic complexity.” 

 
Moreover, ecosystems, whether natural, managed or artificial, are subjected to 

“perturbations” (e.g. natural hazards or biotic and abiotic stresses) and deliver many and 
diversified commercial and non-commercial products and “services.” To account for this 
ecosystemic complexity, to understand the resilience of the ecological processes and to open 
the possibility of ecosystem management and control, we need to articulate various strategies 
-- for reconstructing the spatial and temporal dynamics, starting from observations and from 
increasingly instrumented experiments, for theoretically and experimentally identifying the 
retroactive mechanisms and emergent phenomena, and for modeling and validating these 
models.  
 
 

      Main Challenges 
1. Develop observational and experimental systems for the reconstruction of the 
long-term dynamics of ecosystems.  
2. Model the relationships between biodiversity and the function and dynamics of 
ecosystems. 
3. Associate integrative biology and ecology to decipher evolutionary 
mechanisms. 
4. Simulate virtual landscapes (integration and coupling of biogeochemical and 
ecological models into dynamic landscape mock-ups). 
 

2.4.1. Develop observation and experimental systems for t he 
reconstruction of the long-term dynamics of ecosystems 

The rapid development of in situ systems of measurement (metrology and sensors) is 
making possible the integration of data collected within networks of observation (spatial and 
temporal sampling strategies, environmental research observatories) and/or of experiments 
(microcosms, mesocosms) in models of ecosystems. Further progress requires the 
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development of information systems based on a conceptual modeling of studied ecosystems 
and tools for the multidimensional analysis of data coming from multiple sources (“meta-
analysis”). 

2.4.2. Model the relationships between biodiversity, functioning a nd 
dynamics of the ecosystems 

These relations, which play a central part in the vast field of biodiversity studies, 
describe various functions (production, transfers of matter and energy, resistance and 
resilience to perturbations, etc.), at different scales of space (station, landscape, area, 
continent) and of time. Historically, researchers have approached the study of these relations 
either by wondering about the way the environment and the functioning of the living 
organisms and their interactions determine the assemblies of species, or, more recently, and in 
a reciprocal way, by studying the role of the richness and specific diversity in the way 
ecosystems function. 

2.4.3. Associate integrative biology and ecology to decipher 
evolutionary mechanisms 

To understand and model the response of ecological communities (in their structure, 
functioning and dynamics) to the changes of their environment (climatic changes, pollution, 
biological invasions, etc.) we require a better comprehension of the adaptive mechanisms. 
This task can now be supported by conceptual, methodological and technological progress 
made in integrative biology (genomic functional calculus, biology molecular, genetic, 
physiology and ecophysiology) and by the convergence of approaches from population, 
molecular and quantitative genetics.  

2.4.4. Simulate virtual landscapes (integration and coupling of 
biogeochemical and ecological models into dynamic landscape mock-
ups) 

The concept of virtual mock-ups, based on a categorical representation of the 
landscape mosaic, would make it possible to build a typology of representative landscapes 
(hedged farmland, open field, mixed landscapes, forests, peri-urban areas, etc…). The 
following phases would consist in modeling, first, the functioning of the landscape (i.e. 
biogeochemical cycles, transfers and exchanges: air particulate transport, determinism of the 
microclimate, transport of water and of associated pollutants in the soil and the watersheds) 
with as a deliverable the production of functional relations between landscape topology and 
structure of the exchanges. Second, it is also important to model the dynamics of the 
landscape (i.e. evolution of its space organization) under the effect of the human activities and 
of certain ecological processes (for example, colonization of spaces by the vegetation). Such a 
tool would have a great utility in ecology or epidemiology, in the agronomic disciplines and 
for the local management of land and land use. 

2.4.5. Design decision-support systems for multifunctional 
ecosystems 

All decision making linked to the ecosystem management would be greatly assisted by 
the qualification and quantification of the products and services provided by the ecosystems, 
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and the integration of these services and products in systems of policy-relevant indicators 
(dashboards, tools of decision-making assistance, life cycle analysis and eco-balance analysis, 
etc.). Policy formulation and implementation also require much more sophisticated modeling 
and quantification of human practices and techniques, or management systems relating to 
ecosystems, and fully coupled models taking into account stochastic components (whether 
those are intrinsic or that they are related to the incomplete character of knowledge on the 
elements of these systems, their interactions and the extrinsic factors likely to disturb them). 
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2.5. From individual cognition to social cognition 
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Keywords: Social dynamics, decision criteria modeling, quantitative social measurement, 
social cognition, inter-individual heterogeneity. 

Introduction 

Cognition is information processing, understood in a wide sense; that is, including all 
related aspects such as, for instance, interpretation processes. A cognitive system is thus an 
information processing system. It can be embedded in a single individual or distributed over a 
large number of individuals. We speak of individual cognition or distributed cognition. Social 
cognition is a cognitive process distributed over all members of a society, interacting within a 
social network. Individual cognition as well might be considered as distributed cognition over 
a neural network.  
 

In social networks, as information reaches agents, its content is then processed by the 
social network, producing other pieces of information and other social links following series 
of interactions. This process of social cognition could thus lead to a transformation of the 
social network.  

 
At the individual and collective levels alike, cognitive processes obey strong constraints: 
individuals cannot achieve anything outside of what they are able to do themselves or in 
interaction with others; nothing can be anticipated outside of what they can predict alone or 
by interacting with others. Both the network structure and the nature of interactions act as 
strong constraints on cognitive processes. New protocols appear which make it possible to 
describe or quantify these constraints at the infra-individual, individual and collective levels, 
thus suggesting, in turn, new models. The quick migration of social interactions towards 
digital media enables the massive collection of data on social cognition, from the viewpoint of 
both its processes (spatial structure of interactions, temporal distributions, etc.) and its 
products (online documents, user-focused data, etc.). The coexistence of these two 
phenomena opens today new perspectives for the study of individual and social cognition on 
the basis of benchmarking models with empirical data. This ought to be a major focus of 
research initiatives for a better understanding of the evolution of our societies. 
 
 

 Main Challenges 
1. Individual cognition, cognitive constraints and decision processes  
2. Modeling the dynamics of scientific communities 
3. Society of the Internet, Internet of the society 
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2.5.1. Individual cognition, cognitive constraints and decision 
processes 

The relationship between high-level and low-level cognitive processes remains an 
unsettled issue: the link between dynamic processes in the neural network and symbolic 
processes as they are being studied by psychology and linguistics is still open to question. A 
promising approach consists in exploring in a much more precise manner meso-scale spatio-
temporal dynamics, such as, for example, cortical columns or synchronized neural assemblies 
(or, more broadly, polysynchronic assemblies). These spatio-temporal dynamics may be 
useful in elucidating the microscopic dynamics behind symbolic processes. In order to 
understand better the links between dynamic and symbolic processes, further theoretical and 
methodological exploration, as well as sharing data from very large databases provided with 
their metadata, is required.  
 Significant progress towards this challenge would not only lead to unifying an 
essential aspect of cognitive science, but would also launch much more strongly the new 
discipline of neuroeconomics: observing neural activity brings a novel viewpoint on the study 
of human behaviour towards "nature" or in relation with strategic and social interactions with 
other individuals. From the perspective of cognitive economics, this brings hopes that 
decision theory could be revisited, as well as standard game theory, including the notions of 
"preference" and "utility" which are foundational for economic theory.  

2.5.2. Modeling the dynamics of scientific communities 

Scientific communities constitute a privileged area for the study of social cognition 
because both the structure of the underlying networks (team organization, collaboration 
networks, co-authorship networks, or citation networks) and the production of these 
communities (conferences, journals, papers) is known in a dynamic fashion. In order to 
exchange concepts, scientific communities create their own language whose evolution reflects 
their own activity. 

This makes it possible to address very precise topics pertaining to how these scientific 
communities are collectively processing information. How are new concepts or issues being 
adopted? What are the dynamics by which innovations diffuse (effect of authorities, local 
traditions, etc.)? What is the effect of the breakdown of individuals in communities or the 
creation of links between communities on the development of knowledge? Which are the 
relationships between individual trajectories and community evolutions? What tools should 
we create to visualize dynamically the evolution of scientific paradigms, taking into account 
the continuing input of scientific production?  
 
Examples: 

• Emergence and diffusion of new concepts in bibliographical databases  
• Detection of emerging scientific fields  
• Dynamics of collaboration networks  
• Paradigmatic comparison of distinct scientific communities or institutions  

2.5.3. Society of the Internet, Internet of the society 

The quantity of information stored on the Internet will have soon easily surpassed that 
stored on paper. The Internet concentrates today various types of knowledge storage systems 
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(papers, encyclopedias, etc.). It is also a place where discussions (weblogs, forums) and 
commercial transactions (auction and trade websites) occur, referencing is being produced 
(for individuals through personal webpages as well as for institutions and organizations), and 
it serves as an external memory for relationship networks (friendship networks, work groups, 
etc.). It is also a " world agenda" with hundreds of thousands of events being announced every 
day. What modifications is this new tool bringing to processes of social cognition  (new kinds 
of encounters, new kinds of exchange, new kinds of debates, new kinds of collective building 
of knowledge)? For the first time, we may empirically work on this type of data with a fairly 
large spatio-temporal precision. How can we use these new sources of information to better 
understand social dynamics and create tools to visualize the complexity of social activity 
which the Internet is revealing? A major challenge is to transform raw information available 
from the Internet into structured flows of information which make it possible to visualize, 
model and rebuild social cognition processes at work on the web.  
 
Examples: 

• Impact of weblogs in political and civil debates,  
• New dynamics for the collective elaboration of knowledge (Wikipedia, open-source 

software, etc.) ,  
• Measuring the propagation of social emotion following important social events, 

through the number of requests (ex: Google trends) ,  
• Comparative study of cultural differences through geo-localized informations 

(semantics in webpages, tags, requests on search engines, etc.), reconstruction of 
cultural territories.  

• Formation of epistemic communities, friendship networks 
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2.6. Individuals, structures, societies 

 
Reporter: Denise Pumain (Université Paris 1) 
 
Contributors: Frédéric Amblard (Université de Toulouse), Cyrille Bertelle (LITIS UFR 
sciences technologies), Paul Bourgine (Ecole Polytechnique), David Chavalarias (Institut des 
Systèmes Complexes de Paris Ile-de-France/CNRS), Valérie Dagrain (consultante technologie 
information), Guillaume Deffuant (Meteo-France & U. Paris-Est Cemagref), Silvia De Monte 
(ENS), Sara Franceschelli (Paris Jussieu), Francesco Ginelli (Institut des Systèmes 
Complexes de Paris Ile-de-France), Pablo Jensen (ENS Lyon), Maud Loireau (IRD), Jean-
Pierre Müller (CIRAD), Denise Pumain (Université Paris 1). 
 
Keywords: Institutions, heterarchies, multilevel methodologies, flocking, collective behavior, 
(evolutionary) game theory, cooperation, quantitative measurements, evolution, perturbation 
response, spatial organization, social insects, transition to multicellularity, synchronous 
oscillations, social differentiation, cognitive economics, social networks, social learning. 

Introduction 

Interacting individuals create organisations and are (re)created by them. The behaviour 
of societies is not the simple sum of its elements, but often displays true emergent properties. 
For the sake of analysis, we can distinguish between weak and strong emergence. While 
certain questions – such as the emergence of clustering and/or flocking behavior - can be 
regarded as common to any biological population, human societies included, culture and 
reflexivity introduce new challenges to description efforts. Moreover, geographical entities 
(regions, spatial organisations, networks, landscapes, etc.), influence the interactions between 
individuals. Complex systems methods provide the theoretical framework to understand the 
coevolution of the different description levels (territories, societies and individuals) and the 
evolutionary processes which shape collectives. It helps to analyze the reasons which lead to 
inequalities between different entities. 
 

This challenging question is especially relevant for understanding the multilevel 
dynamics of geographical entities: (places, regions, spatial organisations, networks, 
landscapes, etc.). Most often, stylised facts can be obtained from the co-evolution of 
territories at the macro-geographical level. Models of complex systems can help to reconstruct 
individual behaviours which, under given societal rules and historical context, generate 
inequality between territories. Territorial entities must be understood not only as geographical 
subdivisions but also as systems with particular governance rules and associated collective 
representations which define feelings of belonging which characterise individual identities. 
 

Challenges summary: the main research question in this area is to identify which 
universal properties at the macro level may be explained by collective behaviours (described 
and quantified from societal surveys). For understanding the process of social (or 
geographical) differentiation, we require two types of modeling of strong emergence 
phenomena: firstly of the retroaction of collective patterns on individual representations and 
practices, and secondly, of the emergence of institutions at collective levels out of the 
interactions between individuals and changing collective rules. Another very important 
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challenge, when comparing the development of social sciences with the “hard” sciences, and 
for enabling the transfer of models from studies of physical matters to societal ones, is to 
properly collect in vivo or in vitro data (adapted statistics, data from experimental economics, 
etc.) 
 
 

Main Challenges 
1. Emergence of collective behavior in biological populations 
2. Co-evolution of individuals and society 
3. Co-evolution of individuals, structures and territories 
4. Heterarchies, multiscale organisations 

 

2.6.1. Emergence of collective behavior in biological populatio ns  

Animal societies are commonly described at the collective level due to the evidence 
and immediateness of population-level observations. Often, the characteristics of individual 
agents shape the collective behaviour in a nontrivial manner. One of the most interesting 
challenges of the complex systems approach is then to unveil the relationship between the 
individual and society levels in biological populations. 
 

This is, for instance, the key question when one ponders “flocking” behaviour in 
animal species such as birds, fish, herding mammals and bacteria. Another fascinating 
phenomenon is spatial organization which emerges spontaneously in the nesting behaviour 
and food foraging trails in social insects. At the cellular level, collective synchrony may 
emerge as a result of the interaction of individually oscillating cells.  Moreover, the transition 
from unicellular to multicellular organizations is a major issue of evolution theory. The study 
of excitatory (neuron-like) units interacting via nontrivial connectivity graphs has recently 
shownrich behaviour related to coherence and/or partial synchronization. 
 

In recent years, tools imported from nonlinear physics have supported a considerable 
effort through theory and modeling to characterize these emergent phenomena. Basic 
mechanisms leading to collective behaviour have been identified, some universal properties - 
common to different biological systems - have been documented and new predictions 
formulated at the theoretical level. While a qualitative agreement with observations has been 
generally reached, we need quantitative measurements in biological populations to further 
advance our comprehension of these phenomena. 
 

The emergence of coherence among oscillating cells, the so-called Kuramoto 
transition, for instance, is expected to occur in a wide class of cellular populations. Yet, it has 
been quantitatively demonstrated so far only in physical and chemical systems. Superdiffusive 
behaviour and anomalous number fluctuations have been theorized to occur in flocking 
groups, but have not be studied in empirical observations. The transition to multicellularity, 
described by game theoretical models, has never been observed in experiments of directed 
evolution. 
 

Furthermore, a novel set of questions arises concerning the stability of such emergent 
social structures with regard to external forcing or perturbations. For instance, has the 
interaction between birds in a flock been optimized by evolution for resilience against the 
disruptive effects of an attacking predator? Is it possible to control an entire animal group by 
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influencing a few of its elements? How do ants react to new obstacles introduced into their 
foraging ground? What is the robustness of synchronous behaviour with respect to individual 
diversity? 

2.6.2. Co-evolution of individuals and society 

The renewal of transdisciplinary research in the social sciences reflects the need to 
integrate numerous aspects of human behaviour to fully understand the diversity of human 
cultures and socio-economic institutions. This is particularly clear in the debate among 
economists who, after long commitment to the homo economicus paradigm, are increasingly 
abandoning this view and seeking a new paradigm. Indeed, many phenomena do not fit with 
traditional explanations of socio-economic equilibria, in particular the observed heterogeneity 
of socio-cultural patterns, the fact that we often face transitory phases and local attractors 
instead of stable equilibria and the accumulation of evidence about the importance of social 
influence and others’ beliefs in decision-making processes, even in economic settings. On the 
other hand, policy-makers are pointing out ever more often the fact that new societal 
challenges such as global warming or persistent poverty in certain areas require us to address 
the issue of changing mentalities (i.e. the distribution of preferences or types of agents in 
population) rather than just changing behaviors. Since mainstream economics, and most of the 
time formal social sciences, consider preferences as fixed over time, this leads to new 
theoretical challenges for economics, and for the social sciences more generally, as explained 
by the Nobel prize-winner Vernon Smith (2005): 
 

“Technically, the issue can be posed as one of asking how most productively to 
model agent ‘types’ by extending game theory so that types are an integral part of 
its predictive content, rather than merely imported as an ex post technical 
explanation of experimental results.” 

  
This question about the origin of types, preferences or, in a more comprehensive view, 

the representations, beliefs and values of agents, is one of the more tricky issues that social 
system modeling has to tackle. Since all the agents’ decision-making processes are derived 
from them, it is hard to imagine the correct grounding of models and their conclusions 
without addressing the question. However, very few models tackle the question directly. 
Moreover, most rely on a mechanism of social conformity to make types of agents evolve, 
while it is not clear that the diversity of agents' types in a society can be acounted for only by 
this mechanism. 
 

To go beyond this view, we have to imagine formal frameworks to represent social 
differentiation where the process of differentiation is neither an optimization of a given 
quantity nor the sole by-product of social conformity. 
 

We thus have to find an alternative between methodological individualism and holism, 
where both social influences and individual motivation contribute to the process of 
differentiation of agent types. A third alternative that could be named complex methodological 
individualism (Jean-Pierre Dupuy 2004). 
 

To make this programme concrete, we need to address several methodological 
questions: 
1) We need to investigate mechanisms driving changes in beliefs, goals, preferences and 

values from the point of view of psychology, cognitive sciences and philosophy. This will 
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help to develop suitable tools to represent formally the dynamics of change at an 
individual level. We need to account at the same time for individual agency (the ability to 
choose according to one's own personality) and for social influence on the evolution of the 
individual personality. We must bear in mind the fact that people are able to decide not to 
follow some rules and to create new rules. How can we go from "simplistic" interaction 
mechanisms (optimum, copy, etc.) towards more creative ones? It may be argued that 
people, in many important cirumstances, do not (seem to) follow algorithmic rules. 
Instead, their expertise adapts intuitively to the context: how can we take this into account 
in simulations? 

 
2) We need to better understand the way people shape their social network, how they form 

new links, how they prune old ones, how they perceive social groups and to what extent 
their decisions are socially and spatially embedded. In particular, it is important to succeed 
in representing social groups as endogenous outcomes of social dynamics rather than as 
entities given top-down by the modeler, as they are often described in the literature. 

 
3) We need to develop methods to articulate behaviour at the individual level as well as 

emergent collective behaviours at all scales in space and time. In particular, we should 
address the question of how emergent behaviour can impact retroactively on individual 
behaviour (bottom-up and top-down influences) and what influence network topology has 
on the dynamics a network supports. 

 
4) We need to better understand the roles of history, path-dependence and perturbations. In 

the real social world, structure is the product not just of contemporary actions but of 
history. It is there as we act, and our actions both constitute history and change it. In other 
words, for a simulation to be adequate as a representation of the social sphere, it cannot 
start from agents alone. It is important to include the history in simulations, and pay 
attention to path-dependence. Often, this dependence arises from "errors" in the inference 
and transmission of information, from variations in the environment or from the 
heterogeneity of individual responses. Studies of dynamical systems reveal that these 
pertubations are a key component in the determination of system behaviour. 

 
5) Can we express clearly how social reality feeds back retroactively on agents? At the 

intermediate level of "habits of thought," in Hodgson's terms, "The effect of institutions is 
to frame, channel, constrain individuals, giving rise to new perceptions and dispositions. 
From these new habits of thought and behavior emerge new preferences and intentions, 
changing the institutions, which in turn affect the manner of seeing." 

 
6) What are social models? When evaluating the relevance of a model, it is interesting to 

estimate the representation of the "social" in the model. The relevance of "simple" models 
of social systems (in the style of Schelling's segregation model) is an open question which 
deserves careful epistemological investigation. Possible questions include: to what extent 
is the reflexivity of the agents taken into account? What intermediary levels between 
individuals and society (such as institutions, cultures) are taken explicitly into account? 

  2.6.3. Co-evolution of individuals, structures and territorie s 

Territorial entities (towns, landscapes, regions, etc.) are coevolving with individuals 
and social structures (point 2). Territorial entities act as a context that constrains (both enables 
and limits) individual capacities, while the individuals and the collective social structures, 
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through their practices and interactions, maintain or transform the territorial structures. The 
very existence of territories, through the resources they give access to, or the symbols 
representing them, or the control they have on different aspects of life, acts as a constraint on 
(as well as a resource in) the evolution of individuals. This coevolution involves processes 
which take place on different time scales. The relation between space and time scales is not 
trivial and requires specific investigation. 
 

One problem is to identify the relevant time scale for the observation of spatial entities 
(for example, in the acquisition of remote sensing data). Another problem to solve is how to 
identify relevant territorial entities over time and between different territorial systems (for 
example, identifying a “city” as an agglomeration of urban population). 
 

Another challenge is to identify which processes tend to increase the inequalities 
between territorial entities (for example, of income or GDP between countries, or population 
size or total urban GDP between cities), and how positive feedbacks and scaling laws are 
related to the co-evolution of individuals and social organisations. This raises the issue of the 
role of the social or cultural or economic diversity associated with large size as compared with 
the role of specialisation. 
 

How can we understand transition between stages (periods of time, regimes) where the 
dynamics is constrained by the limitation of local resources (ecological systems), and stages 
where innovations or the expansion of spatial networks removes constraints on system 
expansion? 
 

Territorial entities are organised in social and spatial networks through relations 
depending on the state of communications and transportation. Over historical time, spatial 
distance has been a heavy constraint on social interactions, even if long-distance relations 
have always existed. Today, many relationships seem to be no longer or less constrained by 
distance (and its interpretation as a cost or a length of time). The apparent contraction of space 
over time seems to increase territorial inequalities. Changes in the configuration of 
transportation networks have strong effects on the propagation of epidemics, whereas the 
consequences of changes in communication networks are much more difficult to estimate. 
 

Three main components of the dynamics of territorial entities (such as their growth in 
demographic and economic terms or their potential capacity in terms of sustainability) are 
already well-identified, but remain to be quantified as possible factors of sustainable 
development. These are intrinsic resources (including landscapes, human capital, portfolio of 
economic activities, value of heritage), geographical situation (relative position in economic, 
financial, geopolitical or cultural networks, evolving through time), and the path dependence 
which both enables and limits a subset of dynamic trajectories of individual territories. For 
instance, it is possible to estimate in probabilistic terms the future of rural localities as 
depending on their economic specialisation, their geographical situation relative to cities of 
different size and functions, their own potential resources, and the capacity of initiative of 
their main decision-makers. In the case of cities and metropolitan areas, the weight of these 
factors is different. These weights can be estimated from comparative studies of scaling laws 
for the distributions of city and metropolitan sizes, revealing the incidence of the main 
innovation cycles on urban development. 
 

A major research challenge in this domain is about finding the right data for 
quantifying the interactions between territories. Limited data on material interactions between 
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cities, regions and countries (as migration flows or trade exchanges) can be collected, but we 
often lack data on energetic, financial or information exchanges between them. These 
invisible flows are actually those which maintain and build the dynamics of unequal growth 
and development among territories. They reflect and create the interactions generating 
material flows, yet are generally analysed in a very indirect way, as “network effects”, or 
summarised under “generalised distance measurements” which seek to capture the relative 
situation of each place within a larger system. Any way of improving knowledge about these 
crucial energetic, financial or informational interactions, at any level, would enable significant 
progress in the analysis of territorial dynamics. 
 

Experimental models of urban sustainability could help in developing policies to face 
the challenges of either an increasing scarcity of energy or a change in the organisation of the 
global financial and information networks connecting the metropolitan areas around the 
world. A major question concerns the threat to global stability that will soon emerge from the 
growing divergence between demographic and economic growth: over the next two or three 
decades, the largest metropolises in the world in terms of population will also be the poorest 
in terms of economic production. we need to simulate the reorganisation of global flows at the 
scale of national territories and  of metropolitan networks to estimate the probable costs of 
sustainability.  

2.6.4. Heterarchies, multiscale organisations 

A first distinction can be made between embedded hierarchies in which the macro-
level entities recursively embed the lower level entities, such as hierarchies in ecology (e.g. 
cells, organs, organisms, etc.), and non-embedded hierarchies where entities are representative 
of and/or command the lower level entities (as in structures of government). In both cases, the 
hierarchy depends on the point of view: typically, embedded hierarchies can be observed by 
looking at the relative time scales of the dynamics, and a higher level entity in a non-
embedded system can be a lower level entity in another organization (e.g. representative or 
not representative). Many questions about complex systems require the combining of 
heterogeneous embedded and non-embedded hierarchies. A number of abstractions are 
proposed for dealing with the description of such systems, such as multi-hyper-networks 
(Jeffrey Johnson) and holonic structures (Koestler).  

 
The remaining questions are: 

•   how to represent holonic structures and their dynamics; 
•   how to reconstruct both holonic structures and multi-hyper-networks dynamics from 

observed data; 
•   how to represent these structures and their dynamics to perform predictions. 

 
When holons are used, the question is how to manage their Janus’s double face 

(autonomy with regard to the lower level / heteronomy with regard to the upper level) and 
how to choose the best-suited model of autonomy. 
 

Applications might include accounting for different kinds of hierarchies in modern and 
traditional cultures, the intertwinning of governance mechanisms on a given territory, etc. 
 

The processes which generate and maintain heterarchical structures (partly embedded 
and partly intertwined interaction networks) are generally the same. The structure is defined 
both by qualitative differences and quantitative inequalities between the territorial entities, 
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which are sufficiently pervasive over periods of time longer than the behavioural regime or 
even the generational renewal of their components. These structures are transformed either 
smoothly or more rapidly through innovation processes which use part of the structure (and 
the potential “comparative advantage” of the territory) for introducing new social practices or 
new artefacts. 
 

To establish better predictions of the territorial capacity to evolve and capture 
innovation, we need better knowledge of the heterarchical structures. Which methods and 
instruments can be used for describing and comparing heterarchical organisations, including 
the number of levels, their degree of flexibility or embeddedness, and their functional 
articulation? 

 
To be able to predict the capability of adaptation and innovation of a territorial entity, 

we need an analysis and classification of the historical trajectories of territorial entities, 
including their sensitivity to internal organizational features and to external perturbations. 
This means large explorations (data mining and dynamic modeling) of the evolutions of 
territorial entities in socio-economic and geographical context. 
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2.7. Innovation, learning and co-evolution 
 
Reporter: Denise Pumain (Université Paris 1) 
 
Contributors: David Chavalarias (Institut des Systèmes Complexes de Paris Ile-de-
France/CNRS), Nadine Peyrieras (Institut de Neurobiologie CNRS), Denise Pumain 
(Université Paris 1). 
 
Keywords: innovation, emergence, bifurcation, co-evolution, learning, acceptance, society of 
information. 

Introduction 

Novelty in complex systems appears through a variety of processes including the 
emergence of new entities and new categories, the modification of interaction processes, 
changes of their temporal or spatial scales, or their dynamical transformation. Within the 
perspective of complex systems science, the main question is whether the modes of change 
are comparable when moving from natural or artificial systems towards social systems. A first 
challenge is to identify which dynamic conditions are favourable to innovation. Is innovation 
always associated with jumps, ruptures or bifurcations, or can it proceed from more regular 
trends? Which processes explain the frequent observation of innovation cycles? A second 
challenge is to determine whether there is an acceleration of innovation in human society 
through time, by identifying relevant measures of societal changes. A third challenge is to 
understand how intention and reflection frame innovation in social systems and how the 
feedback effect of learning affects individual and collective cognition over historical time. 

 
 
      Main Challenges 

1. Understanding dynamic conditions of innovation 
2. Modeling innovations and their rhythms  
3. Understanding the relation between cognition and innovation 

 
 

2.7. 1. Understanding the dynamic conditions of innovation 

Can innovation only be analysed ex-post, or can it be predicted, and if so, from which 
indicators and explanatory variables? Are the signs that announce coming change evident in a 
specific part of the system’s dynamics, through the amplification of fluctuations around a 
trajectory, intensification of pre-existing processes, or the transition between quantitative 
toward qualitative variations? How does innovation become accepted, either by introducing 
itself into existing structures or replacing them, or by inducing modifications of these 
structures? Which relationships are established between new artefacts and their 
functionalities, and the new practices based around their use? How can we explain how 
groups of many innovations lead to the observation of large cycles in social evolution?  
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2.7.2. Modeling innovations and their rhythms 

Certain analysts suggest that there is an acceleration of the production frequency of 
innovations, especially through the technical revolutions and the evolution towards a society 
of information. Is this reality or illusion? Answering that question requires a rigorous 
definition of innovation and of information and careful determination of the time intervals that 
measure its frequency. How can we build reference times that are relevant for characterizing 
the rhythms of emergence, succession and co-presence of innovations? In other words, is the 
regular hour time meaningful or should one imagine other measures of societal time? 

2.7.3. Understanding the relation between cognition and innovation 

Societies also build and assimilate innovations concerning the artefacts they produce 
in their own practices and institutions. Is it possible to understand the social dynamics of 
innovation without introducing the individual and collective intentionality and reflexivity? Is 
social innovation in cooperation or conflict with biological evolution? Does the fact that 
innovation is targeted, and that the processes of learning and acceptance are conveyed through 
legal, economic or cultural regulations, introduce different characteristics for innovation in 
human societies? Within these processes, is it possible to identify at meso-levels social 
milieux or networks or geographical spaces that would be more favourable to innovation, or 
loaded with a specific innovative capacity? What are the expressions of the interactions 
between innovation and individual cognition? Can the social control on innovation reach as 
far as the biological transformations? 
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2.8. Territorial intelligence and sustainable development 
 
Reporter: Denise Pumain (Université Paris 1) 
 
Contributors: Pierre Auger (ISC-IRD-Geodes), Olivier Barreteau (Cemagref), Jean-Bernard 
Baillon (Université Paris 1), Rémy Bouche (INRA),Danièle Bourcier (CNRS), Paul Bourgine 
(Ecole Polytechnique), Elisabeth Dubois-Violette (CNRS), Jean-Pierre Gaudin (IEP), 
Elisabeth Giaccobino (CNRS ), Bernard Hubert (INRA), Jean-Pierre Leca (Université Paris 
1), Jean-Pierre Muller (CIRAD), Ioan Negrutiu (ENS Lyon), Denise Pumain (Université Paris 
1). 
 
Keywords: geographical space, territorial configuration, rural and urban regions, networks, 
systems of cities, multi-level and multi-actor governance, resources, regulation, sustainable 
development, negotiation, geographical information systems, cellular automata, spatial 
simulation, multi-agents systems. 

Introduction 

A physical territory is a system that naturally integrates a variety of processes usually 
analysed by a diversity of disciplines (economics, sociology, and so on). These processes 
require natural and social resources and include individual and collective actions, which 
together act in building the territory. Households, firms or government bodies take both 
planned and unplanned actions, as well as reiterated practices and strategic anticipations. 
Physical infrastructures as well as immaterial long lasting socio-spatial configurations 
constrain these actions and also shape the territory at several scales in space and time. 
Penetrating this complexity requires simulation models -- for understanding the relationship 
between processes and structures, for evaluating and preparing individual and collective 
actions, or for measuring their impact on the viability of spatial structures. Such models are 
important tools for intelligent decision-making and may then contribute to change the 
evolution of territories.  
 
 

Main Challenges 
1. Understanding territorial differentiation.  
2. Towards a reflexive territorial governance  
3. Viability and observation of territories 
 

 

2.8.1. Understanding territorial differentiation 

Territories are reorganized at different scales, from local to global, through the 
expansion of material and immaterial networks and the diversification of levels where 
decisions take place. “Network territories” are today forming through telecommunications-
based links, ignoring the need for physical proximity, at the level of individuals and of global 
firms. At the same time, contiguous territories are partially intersecting, for instance when 
their future is governed by several decision centres. Are the classical territorial models still 
valid for representing geographical differences? How can they be replaced?  
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The evolution of territories is usually described in terms of geo-history, territorial 
viability, or adaptation and innovation capacity. It must be related to processes such as the 
development of institutions, technological innovations, transformations of social practices and 
representations. Within this context, modes of circulation and concentration of information 
are essential. Very often, networks conveying important information are not observable, and 
have to be reconstructed through simulation models. The challenge is to couple dynamic 
models representing spatial interactions at a variety of scales and geographical information 
systems which can integrate and visualize the located information and the evolution of 
networks and territories. 

2.8.2. Towards a reflexive territorial governance 

Territorial governance no longer takes place through simple hierarchical top-down 
control, but a multi-level process involving many actors. Intermediate control structures are 
emerging between territorial scales. New models of legitimating power are being invented 
between representative and participative democracy and inclusive governance. Moreover, the 
growing interest for sustainability invites us to seriously take note of the natural dynamics that 
operate at different scales of time and space as well. 
 

The building of well-informed governance relies on the invention of new decision 
models which consider processes and institutions, configurations of competition and 
cooperation, and also symbolic and practical interactions. Natural and social dynamics have to 
be coupled in identifying organization levels, scales of time and relevant territorial 
subdivisions for a reflexive control. A further difficulty is to include the diversity of the 
strategies of the actors in such models. Generally speaking, the question is to identify which 
structures are emerging at the meso level and to understand what are the linkages between 
micro, macro and meso levels. 

2.8.3. Viability and observation of territories 

The retrospective and prospective analysis of territories is essential for improving 
knowledge about the long-term sustainability of geographical entities in their social, 
economic, ecological and ethical dimensions. Questions of measurement are fundamental. 
Choosing indicators, their weighting, defining norms, identifying objectives and stakes are 
specific problems for territories that are both complementary and competitive. More reliable 
spatio-temporal databases are needed for measuring the evolutions and comparing territorial 
dynamics. 

A major issue is to adapt sources of information which were established for 
administrative or political units, at a given period in time, for their future use in evaluating 
territorial entities (cities, regions, networks) which have their own dynamics. The problem is 
crucial for long-term studies of the resilience and vulnerability of urban systems, or for a 
comparative evaluation of agenda 21 programs (which combine societal, economic and 
ecological objectives). 
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2.9. Ubiquitous computing  
 
Contributors: Marc Schoenauer (INRIA) 
 
Keywords : Peer to peer networks (P2P) , ad hoc networks, observation of multiscale spatio-
temporal phenomena (trophic networks, agriculture, meteorology, ...), epidemic algorithms 
computational models and information theory , spatial computing, self-aware systems , 
common sens, privacy. 

Introduction 

Today's technology makes it possible and even necessary to radically change the way 
we gather and process information, from the monolithic approach to the networked 
collaboration of a huge number of possibly heterogeneous comping units. This new approach 
should be based on distributed processing and storage, and will allow us to add intelligence to 
the many different artefacts which are increasingly important in our lives, and to compensate 
the foreseeable limits of classical Computer Science (end of the Moore era). 
 
This long term objective requires : 

• solving issues related to physical layout and communications (distributed routing and 
control)  

• setting up self-regulating and self-managing processes  
• designing new computing models  
• specifying adaptive programming environments (using Machine Learning, retro-action 

and common sense). 
  

It seems clear that we have today reached the technological limits of Von Neumann's 
sequential computational model. Hence new paradigms are necessary to meet the ever-
growing demand for computational power of our modern society. The heart of these new 
paradigms is the distribution of computing tasks on decentralized architectures (e.g. multi-
core processors and computer grids). The complexity of such systems is the price which must 
be paid to address the scaling and robustness issues of decentralized computing. Furthermore, 
it is now technologically possible to flood the environment with sensors and computing units 
wherever they are needed. However, an efficient use of widely distributed units can only be 
achieved through networking — and physical constraints limit the communication range of 
each unit to a few of its neighbours (ad hoc networks). At another scale, the concept of P2P 
networks also implies a limited visibility of the whole network. In both cases (ad hoc and P2P 
networks), the issue is to make an optimal use of the complete data which is available for the 
whole network. The challenges in this framework are targeted toward new computational 
systems, but will also address some issues raised in social or environmental networks, also 
treated in other pages of this road-map. 
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       Main Challenges 
1. Local design for global properties (routing, control, confidentiality)  
2. Autonomic Computing (robustness, redundancy, fault tolerance)  
3. New computational models: distributing processing and storage, fusion of spatial, 

temporal and/or multi-modal data, abstraction emergence 
4. New programming paradigms: creation and grounding of symbols (including 

proof and validation) 
 

2.9.1. Local design for global properties 

Routing, control and privacy  
In order to better design and maintain large networks, we need to understand how 

global behaviours can emerge even though each element only has a very limited vision of the 
whole system, and makes decisions based on local information. A base model is that of 
epidemic algorithms, in which each element exchanges information with its neighbours only. 
The important issues are the type of information being exchanged (which should take into 
account privacy constraints) and the selection of corresponding neighbours. Both choices 
influence the global behaviour of the system.  
 
Methods: Information theory; dynamical systems; statistical physics; epidemic algorithms; 
bio-inspired algorithms  

2.9.2. Autonomic Computing 

Robustness, redundancy, fault tolerance  
The large-scale deployment of computational systems will not be possible without 

making those systems autonomous and, thereby, endowing them with properties of living 
systems such as natural robustness, reliability, resilience and homeostasis. However, the size 
and heterogeneity of such systems makes it difficult to come up with analytical models; 
moreover, the global behaviour of the system also depends on the dynamical and adaptive 
behaviour of the whole set of users. 
 
Methods: Bio-inspired systems, self-aware systems.  

2.9.3. New computing paradigms 

Distributed processing and storage, fusion of spatial, temporal and/or multi-modal 
data, abstraction emergence  

The networking of a large number of possibly heterogeneous computational units 
(grids, P2P, n-core processors) requires a huge computational power. However, in order to 
efficiently use such power, we need new computing paradigms that take into account the 
distribution of information processing on weak or slow units, and the low reliability of those 
units and of the communication channels. Similarly, data distribution (sensor networks, RFID, 
P2P) raises specific challenges such as integration, fusion, spatio-temporal reconstruction or 
validation. 
 
Methods: Neuro-mimetic algorithms, belief propagation.  
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2.9.4. Specification of adaptive programming environments 

Machine learning, retro-action and common sense  
          Programming ambient intelligence systems (domotic, aging, fitness) must include the 
user in the loop. The specification of the expected user behaviour requires a transparent link 
between the low-level data that are available and the user's natural concepts (e.g. symbol 
grounding). On the other hand, the research agenda must start by studying actual habits; such 
co-evolution of the user and the system leads to hybrid complex systems.  
 
Methods: Brain Computer Interface, programming by demonstration, statistical learning. 
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2.10. Geosciences and the environment  
 
Reporter: Michael Ghil (ENS Paris) 
 
Contributors: Pierre Baudot (Inaf CNRS), François Daviaud (CEA), Bérengère Dubrulle 
(CEA), Patrick Flandrin (CNRS ENS Lyon), Cedric Gaucherel (INRA), Gabriel Lang (Agro 
Paris Tech), Francesco d'Ovidio (ENS), Daniel Schertzer (Méteo France), Eric Simonet 
(CNRS).   
  
Keywords: Climate change, predictability and uncertainties, ecosystems and landscapes, 
multiple scales and heterogeneity, climate and trophic networks, emergent diseases, transport 
and mixing, climate -weather interactions, stochastic vs. deterministic modeling. 

Introduction 

The physical, chemical and biological environment of humans – from the local, 
community level to the global, planetary one – represents a rapidly increasing concern of the 
post-industrial era. Its study involves all the subsystems of the Earth system – the atmosphere, 
oceans, hydro- and cryosphere, as well as the solid Earth’s upper crust – along with their 
interactions with the biosphere and with human activities. We are therefore dealing with a 
highly complex, heterogeneous and multiscale system, and with an exceedingly 
interdisciplinary set of approaches to it. The concepts and tools of complex-system theory 
seem particularly useful in attacking three major challenges. Firstly, the range of uncertainties 
still prevailing in future climate change projections has until now been attributed largely to 
difficulties in parameterising subgrid-scale processes in general circulation models (GCMs) 
and in tuning semi-empirical parameters. Recent studies also point to fundamental difficulties 
associated with the structural instability of climate models and suggest applying the theory of 
random dynamical systems to help reduce the uncertainties. Secondly, the Earth system varies 
at all space and time scales and is thus out of and probably far from thermodynamic 
equilibrium. The methods of statistical physics are therefore of interest in modeling the 
system’s near-equilibrium behaviour and then extending the results farther away from 
equilibrium. Finally, much of the interest in this area arises from concern about the socio-
economic impact of extreme events. The study of their statistics and dynamics can lead to a 
deeper understanding and more reliable prediction of these events.   

 
The physical, chemical and biological environment of humans – from the local, 

community level to the global, planetary one – represents a rapidly increasing concern of the 
post-industrial era. The system’s complexity is certainly comparable to that of systems studied 
in the life or cognitive sciences. It therefore appears highly appropriate to include this major 
area of applications of complex-system theory into the concerns of this road map. 

 
The Earth system involves several subsystems – the atmosphere, oceans, hydro- and 

cryosphere, as well as the solid Earth’s upper crust – each of which in turn is highly 
heterogeneous and variable on all space and time scales. Moreover, this variability is affected 
by and in turn affects the ecosystems hosted by each subsystem, as well as humans, their 
economy, society and politics. We are thus dealing with a highly complex, heterogeneous and 
multiscale system, and so the scientific disciplines needed to better understand, monitor, 
predict and manage this system are diverse and numerous. They include various subsets of the 
physical and life sciences, mathematics and informatics, and of course the full set of the geo- 
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and environmental sciences, from geology, geophysics and geochemistry to the atmospheric 
and oceanic sciences, hydrology, glaciology and soil science. 

Among the key interdisciplinary issues that arise in this major area are future climate 
change, change in the distribution of and interaction between species given past, present and 
future climate change, the way that the biogeochemical cycles of trace chemicals and 
nutrients interact with other changes in the system, and the connection between health issues 
and environmental change. On the methodological side, major objectives that would help to 
solve these issues include better prediction and reduction of uncertainties, better description 
and modeling of the transport and mixing of planetary fluids, understanding the net effect of 
weather on climate and the changes in weather as climate changes. Understanding the best 
uses of stochastic, deterministic or combined modeling in this highly complex setting is also 
essential. 

 
To deal at the same time with some of these key issues and attempt to achieve some of 

the associated major objectives, we propose to focus on the following three main challenges: 
(i) to understand the reasons for and reduce the uncertainties in future climate change 
projections; (ii) to study the out-of-equilibrium statistical physics of the Earth system, across 
all scales; and (iii) to investigate the statistics and dynamics of extreme events. 

 
The range of uncertainties in future climate change projections was originally 

determined in 1979 as an equilibrium response in global temperatures of 1.5–4.5 K for a 
doubling of atmospheric CO2 concentration. After four IPCC assessment reports, it is still of 
a few degrees of end-of-century temperatures for any given greenhouse gas scenario. This 
persistent difficulty in reducing uncertainties has, until recently, been attributed largely to 
difficulties in parameterising subgrid-scale processes in general circulation models (GCMs) 
and in tuning their semi-empirical parameters. But recent studies also point to fundamental 
difficulties associated with the structural instability of climate models and suggest applying 
the theory of random dynamical systems to help reduce the uncertainties.  

 
The Earth system varies at all space and time scales, from the microphysics of clouds 

to the general circulation of the atmosphere and oceans, from micro-organisms to planetary 
ecosystems, and from the decadal fluctuations of the magnetic field to continental drift. The 
entire system, as well as each of its subsystems, is a forced and dissipative system and is thus 
out of thermodynamic equilibrium and probably far away from it. The methods of statistical 
physics therefore seem of interest in modeling the system’s near-equilibrium behaviour and 
trying to derive results that might then be extended to more realistic settings, farther away 
from equilibrium. 

 
Finally, much of the interest in the geosciences and the environment arises from 

concern about the socio-economic impact of extreme events. The standard approach to such 
events rests on generalized extreme value theory (GEV). Its assumptions, however, are rarely 
met in practice. It is therefore necessary to pursue more sophisticated statistical models and to 
try to ground them in a better understanding of the dynamics that gives rise to extreme events. 
Based on better statistical and dynamical models, we should be able to provide more reliable 
predictive schemes for extreme events, and subject them to extensive testing across 
disciplines and data sets. 

 
The geosciences have a long tradition of contributing to the study of nonlinear and 

complex systems. The work of E.N. Lorenz in the early 1960s has provided a major paradigm 
of sensitive dependence on initial state. His work and that of C. E. Leith have yielded deep 
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insights into error propagation across scales of motion. Multiscale phenomena in the solid-
earth and fluid-envelope context have helped refine the understanding of multi-fractality and 
its consequences for prediction across disciplines, even in the social and political sphere. We 
hope and trust that the work proposed here will prove equally inspiring and fruitful for the 
theory of complex systems and its applications in many other disciplines. 

 
 

Main Challenges 
1. Understanding and reducing uncertainties. 
2. Out-of-equilibrium statistical physics of the Earth system 
 

2.10.1. Understanding and reducing uncertainties 

Charney et al. (Natural Academic Press, 1979) were the first to attempt a consensus 
estimate of the equilibrium sensitivity of climate change in atmospheric CO2 concentrations. 
The result was the now famous range of 1.5K to 4.5K of an increase in global near-surface air 
temperatures Ts given a doubling of CO2 concentrations. Earth's climate, however, never was 
and probably never will be in equilibrium. In addition to estimates of equilibrium sensitivity, 
the four successive reports of the Intergovernmental Panel on Climate Change (IPCC: 1991, 
1996, 2001, 2007) therefore focused on estimates of climate change over the 21st century, 
based on several scenarios of CO2 increase over this time interval. The general circulation 
models' (GCM) results of temperature increase over the coming 100 years have stubbornly 
resisted any narrowing of the range of estimates, with results for end-of-century temperatures 
still ranging over several degrees Celsius, for a fixed CO2 increase scenario. This difficulty in 
narrowing the range of estimates is clearly connected to the complexity of the climate system, 
the nonlinearity of the processes involved and the obstacles to a faithful representation of 
these processes and feedbacks in GCMs. 

 
One obvious source of errors is the difficulty of representing all the processes that fall 

below the spatial and temporal resolution of the model. This problem is especially evident for 
biochemical processes, where the microphysical and microbiogical dynamics is coupled to the 
turbulent dynamics of the ocean and atmosphere and produces a spatiotemporal variability at 
virtually any scale of observation. One example is phytoplankton, whose fundamental role in 
absorbing CO2 is affected as much by the nutrient advection due to the large-scale circulation 
(basin scale, years), as by the presence of upwelling filaments (1-20 km, days), the ecological 
interaction with zooplankton (mm/m, hours/days), or the turbulent and biological processes at 
the cell scale. The study of such biochemical phenomena requires the development of novel 
theoretical tools that are beyond the capability of individual disciplines but which, because of 
their characteristics, fall naturally into the framework of complex systems. Such studies 
should be able to: 

• deal at the same time with the various spatial and temporal scales of transport and 
tracer dynamics; 

• integrate descriptions of different disciplines, notably transport and mixing properties 
from turbulence theory, and the biological and/or chemical processes of the advected 
tracer; 

• provide results in a form that can be compared with ever-expanding observational 
datasets; 

• and finally, allow to formulate a computationally-efficient parameterization scheme 
for circulation models. 
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A second source of errors lies in the fundamental difficulty related to the structural 

instability of climate models. It is well-known that the space of all deterministic, 
differentiable dynamical systems (DDS) has a highly intricate structure: the structural stable 
systems are unfortunately not typical of all deterministic dynamics, as originally hoped 
(Smale, 1967). Indeed, what is modeled by DDS does not appear to be typically robust from a 
qualitative, topological point of view, even for small systems like the Lorenz (1963) model. 
This disappointing fact has led mathematicians to grasp the problem of robustness and 
genericity with the help of new stochastic approaches (Palis, 2005). On the other hand, work 
on developing and using GCMs over several decades has amply demonstrated that any 
addition or change in a model's "parametrisations" - i.e. in the representation of subgrid-scale 
processes in terms of the model's explicit, large-scale variables - may result in noticeable 
changes in the model solution's behaviour. 

 
The range of uncertainties issue, far from being a mere practical difficulty in "tuning" 

several model parameters, could be related to the inherent structural instability of climate 
models. A possible way of reducing this structural instability is the use of stochastic 
parametrizations with the aim of smoothing the resulting dynamics through ensemble average. 
A key question is then to determine whether ad-hoc stochastic parametrisations add some 
form of robustness to known deterministic climate models, and how they can reduce the range 
of uncertainties in future climate projections. Preliminary results indicate that noise has 
stabilizing effects that need to be investigated across a hierarchy of climate models from the 
simple to the most complex GCMs. Such an idea could be tested using theoretical concepts 
and numerical tools from the theory of random dynamical systems (RDS; L. Arnold, 1998). In 
this purely geometrical theory, noise is parametrised so as to treat stochastic processes as 
genuine flows living in an extended phase space called a "probability bundle". Random 
invariant sets such as random attractors can then be defined and rigorously compared, using 
the RDS concept of stochastic equivalence, thereby enabling us to consider the structural 
stochastic stability of these models. 

2.10.2. Out-of-equilibrium statistical physics of the Earth  system 

The Earth and its various components (hydrosphere, atmosphere, biosphere, 
lithosphere) are typical out-of-equilibrium systems: due to the intrinsic dissipative nature of 
their processes, they are bound, without forcing, to decay to rest. However, in the presence of 
permanent forcing, a steady state regime can be established, in which forcing and dissipation 
equilibrate on average, allowing the maintenance of non-trivial steady states, with large 
fluctuations covering a wide range of scales. The number of degrees of freedom involved in 
the corresponding dynamics is so large that a statistical mechanics approach - allowing the 
emergence of global relevant quantities to describe the systems - would be welcome. Such a 
simplification would be especially welcome in the modeling of the fluid envelopes, where the 
capacity of present computers prohibits the full-scale numerical simulation of the (Navier-
Stokes) equations describing them. Similar problems are ubiquitous in biology and 
environment, when the equations are known. 

 
Another interesting outcome of a statistical approach would be to derive an equivalent 

of the Fluctuation-Dissipation Theorem (FDT), to offer a direct relation between the 
fluctuations and the response of the system to infinitesimal external forcing. Applied to the 
Earth system, such an approach could provide new estimates of the impact of climate 
perturbation through greenhouse gas emissions. 
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Various difficulties are associated with the definition of out-of-equilibrium statistical 

mechanics in the earth system, including: 
• the problem of the definition of an entropy (possibly an infinite hierarchy of them) in 

heterogeneous systems; 
• the identification of the constraints; 
• the problem of the non-extensivity of the statistical variables, due to correlations 

between the different components of the system (possibly solved by introducing 
effective (fractional) dimensions).  

 
On the physical side, several advances have been made recently in the description of 

turbulence, using tools borrowed from statistical mechanics for flows with symmetries. 
Variational principles of entropy production are also worth considering. Other advances have 
been made with regard to the equivalent of the FDT for physical systems far from 
equilibrium. Experimental tests in a glassy magnetic system have evidenced violation of the 
FDT through non-linearities in the relation between fluctuation and response. General 
identities between fluctuation and dissipation have been theoretically derived only for time-
symmetric systems. They have been experimentally tested successfully in dissipative (non 
time-symmetric) systems like electrical circuits or turbulent flow. It would be interesting to 
extend these results to the Earth system. 
  
 






